Good Conditions for the Total

  • K. I. Beidar
  • F. Kasch
Part of the Trends in Mathematics book series (TM)


Let R be a ring with 1 ∈ R. In Mod-R the total Tot(M, N) is a semi-ideal, which contains the radical Rad(M, N), the singular ideal △(M,N)and the cosingular ideal ▽(M, N). We study conditions on modules Q and P, which imply that Rad(Q, N) = △(Q,N) = Tot(Q, N) and Rad(M, P) = ▽(M, P) = Tot(M, P) for all M and N. We prove that these equalities hold if Q is injective, resp. P is semi-perfect and projective. To get further results and interesting topics, we consider the question: For which Q is △(Q,N) = Tot(Q, N) for all N? Here we study rings R such that the condition △(Q, N) = Tot(Q, N) for all N implies that Q is a direct sum of injective modules. We conjecture that such rings must be right Noetherian and prove that they (and all their homomorphic images) are right Goldie rings. Further, the conjecture is confirmed in a number of cases.


Direct Summand Injective Module Noetherian Ring Primitive Ideal Minimal Prime Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. F. Atyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, New York, 1969.Google Scholar
  2. [2]
    K. I. Beidar, On rings with zero total, Beiträge zur Algebra and Geom. 38 (1997), 233–238.MathSciNetMATHGoogle Scholar
  3. [3]
    K. I. Beidar and R. Wiegandt, Radicals induced by the total of rings, ibid., 149–159.Google Scholar
  4. [4]
    V. P. Camilo, Modules whose quotients have finite Goldie dimension, Pacific. J. Math. 69 (1977), 337–338.MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. W. Chatter and C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston, 1980.Google Scholar
  6. [6]
    N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Math. Ser. 313, Longman, 1994.MATHGoogle Scholar
  7. [7]
    C. Faith, Algebra I. Rings, Modules, and Categories, SpringerVerlag, Heidelberg, New York, 1976.Google Scholar
  8. [8]
    C. Faith, Algebra II. Ring Theory, Springer-Verlag, Heidelberg, New York, 1976.MATHCrossRefGoogle Scholar
  9. [9]
    F. Kasch, Moduln und Ringen, Teubner, Stuttgart, 1977 (see also English, Russian and Chinese editions).CrossRefGoogle Scholar
  10. [10]
    F. Kasch, Moduln mit LE-Zerlegung und Harada-Moduln, Lecture Notes, München, 1982.Google Scholar
  11. [11]
    F. Kasch, Partiell invertierbare homomorphismen und das total, Al-gebra Berichte 60, Verlag R. Fisher, München, (1988), 1–14.MATHGoogle Scholar
  12. [12]
    F. Kasch, The total in the category of modules, General Algebra (1988), 129–137, Elsevier Sci. Pub., Amsterdam.Google Scholar
  13. [13]
    F. Kasch and W. Schneider, The total of modules and rings, Algebra Berichte 69, Verlag R. Fischer, München, (1992), 1–85.MATHGoogle Scholar
  14. [14]
    F. Kasch and W. Schneider, Exchange properties and the total, Advances in Ring Theory, edited by S. K. Jain and S. Tariq Rizvi, Birkhäuser, Boston, 1997, 163–174.Google Scholar
  15. [15]
    C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904–907.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    G. O. Michler, Prime right ideals and right Noetherian rings, in Ring Theory, edited by R. Gordon, Academic Press, New York, (1972), 251–255.Google Scholar
  17. [17]
    S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes 147, Cambridge Univ. Press, Cambridge, 1990.MATHCrossRefGoogle Scholar
  18. [18]
    W. Schneider, Das Total von Moduln and Ringen, Algebra Berichte 55, Verlag R. Fischer, München, (1987), 1–59.MATHGoogle Scholar
  19. [19]
    B. Stenström, Rings of Quotients, Springer-Verlag, Heidelberg, New York, 1975.MATHCrossRefGoogle Scholar
  20. [20]
    R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, New York, 1991.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • K. I. Beidar
    • 1
  • F. Kasch
    • 2
  1. 1.Department of MathematicsNational Cheng Kung UniversityTainan 701Taiwan
  2. 2.Mathematisches InstitutUniversität MünchenMünchenGermany

Personalised recommendations