The Coinduced Functor and Homological Properties of Hopf Modules

  • Tao Li
  • Zhixi Wang
Conference paper
Part of the Trends in Mathematics book series (TM)


Let H be a commutative Hopf algebra over a field k and A a right H-comodule algebra. This paper is concerned with homological algebra for Hopf A-modules, especially with injective modules, and the transfer of homological properties of A to those of A coH .




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. H. Ulbrich, Smash products and comodules of linear maps,Tsukuba J. Math. 14 (1990), 371–378.MathSciNetMATHGoogle Scholar
  2. [2]
    A. R. Magid, Cohomology of rings with algebraic group action, Adv. Math. 59 (1986), 124–151.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    B. Zhou, S. Canepeel and S. Raianu, The coinduced functor for infinite dimensional Hopf algebras, J. Pure and Applied Algebra 107 (1996), 141–151.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    T. Guédénon, Alg é bre homologique dans la cat é gorie Mod (R#U(g)),J. Algebra 197 (1997), 584–614.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.Google Scholar
  6. [6]
    J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Tao Li
    • 1
  • Zhixi Wang
    • 1
  1. 1.Department of MathematicsCapital Normal UniversityBeijingP. R. China

Personalised recommendations