The Coinduced Functor and Homological Properties of Hopf Modules

  • Tao Li
  • Zhixi Wang
Conference paper
Part of the Trends in Mathematics book series (TM)


Let H be a commutative Hopf algebra over a field k and A a right H-comodule algebra. This paper is concerned with homological algebra for Hopf A-modules, especially with injective modules, and the transfer of homological properties of A to those of A coH .


Hopf Algebra Injective Module Homological Property Exact Functor Smash Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. H. Ulbrich, Smash products and comodules of linear maps,Tsukuba J. Math. 14 (1990), 371–378.MathSciNetMATHGoogle Scholar
  2. [2]
    A. R. Magid, Cohomology of rings with algebraic group action, Adv. Math. 59 (1986), 124–151.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    B. Zhou, S. Canepeel and S. Raianu, The coinduced functor for infinite dimensional Hopf algebras, J. Pure and Applied Algebra 107 (1996), 141–151.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    T. Guédénon, Alg é bre homologique dans la cat é gorie Mod (R#U(g)),J. Algebra 197 (1997), 584–614.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.Google Scholar
  6. [6]
    J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Tao Li
    • 1
  • Zhixi Wang
    • 1
  1. 1.Department of MathematicsCapital Normal UniversityBeijingP. R. China

Personalised recommendations