Skip to main content

On Stability Radii of Slowly Time-Varying Systems

  • Chapter
Advances in Mathematical Systems Theory

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

Abstract

We consider robustness of exponential stability of time-varying linear systems with respect to structured dynamical nonlinear perturbations. Sufficient conditions in terms of L 2-stability are derived. It is shown that the infimum of the complex stability radii of a family of time-invariant linear systems provides a good estimate for the stability radius of a linear time-varying system if time variations are sufficiently slow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. CoppelDichotomies in Stability TheoryLecture Notes in Mathematics 629, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  2. J. L. Daleckii and M. G. KreinStability of Solutions of Differential Equations in Banach SpacesAMS, Providence, RI, 1974.

    Google Scholar 

  3. D. F. Delchamps, Analytic feedback control and the algebraic Riccati equationIEEE Trans. Aut. Control29:1031–1033, 1984.

    Article  MATH  Google Scholar 

  4. F.-D. Filbir, Computation of the structured stability radius via matrix sign functionSyst. Control Letters22:341–349, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Gripenberg, S.-O. Londen, and O. StaffansVolterra Integral and Functional EquationsCambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  6. D. Hinrichsen and A.J. Pritchard, Stability radii of linear systemsSyst. Control Letters7:1–10, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Hinrichsen and A.J. Pritchard, Stability radius for structured perturbations and the algebraic Riccati equationSyst. Control Letters8:105–113, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Hinrichsen and A.J. Pritchard, Robust stability of linear time-varying systems with respect to multi-perturbations, Proc. European Control Conference, Grenoble, 1366–1371, 1991.

    Google Scholar 

  9. D. Hinrichsen and A.J. Pritchard, Destabilization by output feedbackDif. j`. Integral Equations5:357–386, 1992.

    MathSciNet  MATH  Google Scholar 

  10. D. Hinrichsen, A. Ilchmann, and A.J. Pritchard, Robustness of stability of time-varying linear systemsJ. Diff. Equations82:219–250, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hinrichsen, B. Kelb, and A.J. Pritchard, An algorithm for the computation of the complex stability radiusAutomatica25:771–775, 1989.

    Article  MATH  Google Scholar 

  12. A. IlchmannContributions to Time-Varying Linear SystemsVerlag an der Lottbek, Hamburg, 1989.

    MATH  Google Scholar 

  13. B. Jacob, A formula for the stability radius of time-varying systemsJ. Diff. Equations142:167–187, 1998.

    Article  MATH  Google Scholar 

  14. B. Jacob, V. Dragan, and A.J. Pritchard, Infinite dimensional time-varying systems with nonlinear output feedbackIntegral Equations Oper. Th.22:440–462, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.A. Lawrence and W.J. Rugh, Gain scheduling dynamic linear controllers for a nonlinear plantIEEE Trans. Auto. Control31:381–390, 1995.

    MathSciNet  MATH  Google Scholar 

  16. W.J. RughLinear System Theory2nd ed., Prentice-Hall, Upper Saddle River, NJ, 1996.

    MATH  Google Scholar 

  17. J.S. Shamma and M. Athans, Analysis of gain scheduled control for nonlinear plantsIEEE Trans. Auto. Control35:898–907, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Sontag, Comments on integral variants of ISSSyst. Control Letters34:93–100, 1999.

    Article  MathSciNet  Google Scholar 

  19. J. Sreedhar, P. Van Dooren, and A. L. Tits, A level-set idea to compute the real Hurwitz-stability radius, Proc.34th Conference on Dec. and ControlNew Orleans, LA, 126–127, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ilchmann, A., Mareels, I.M.Y. (2001). On Stability Radii of Slowly Time-Varying Systems. In: Colonius, F., Helmke, U., Prätzel-Wolters, D., Wirth, F. (eds) Advances in Mathematical Systems Theory. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0179-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0179-3_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6649-5

  • Online ISBN: 978-1-4612-0179-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics