Skip to main content

Between Mathematical Programming and Systems Theory: Linear Complementarity Systems

  • Chapter
Advances in Mathematical Systems Theory

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 305 Accesses

Abstract

Complementarity systems arise from the interconnection of an input-output system (of the type well known in mathematical systems theory) with a set of complementarity conditions (of the type well known in mathematical programming). It is shown by means of a list of examples that complementarity systems appear quite naturally in a broad range of applications. A solution concept for linear complementarity systems is provided, and conditions for existence and uniqueness of solutions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, Synchronization and Linearity, Wiley, New York, 1992.

    MATH  Google Scholar 

  2. G. Basile and G. Marro, Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, NJ, 1992.

    Google Scholar 

  3. F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81:637–659, 1973.

    Article  Google Scholar 

  4. M.K. Çamhbel and J.M. Schumacher, Well-posedness of a class of piecewise linear systems, In Proc. European Control Conference ‘89, Karlsruhe, Aug. 31 - Sept. 3, 1999. (CD-ROM)

    Google Scholar 

  5. R.W. Cottle, J.-S. Pang, and R.E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.

    MATH  Google Scholar 

  6. B. De Schutter and B. De Moor, Minimal realization in the max algebra is an extended linear complementarity problem, Syst. Control Letters 25:103–111, 1995.

    Article  MATH  Google Scholar 

  7. B. De Schutter and B. De Moor, The linear dynamic complementarity problem is a special case of the extended linear complementarity problem, Syst. Control Letters 34:63–75, 1998.

    Article  MATH  Google Scholar 

  8. P. Dupuis, Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets, Stochastics 21:63–96, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Dupuis and A. Nagurney, xDynamical systems and variational inequalities, Annals Operations Research 44:9–42, 1993.

    MathSciNet  MATH  Google Scholar 

  10. A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988.

    Google Scholar 

  11. F.R. Gantmacher, The Theory of Matrices, Vol. I, Chelsea, New York, 1959.

    MATH  Google Scholar 

  12. A.H.W. Geerts and J.M. Schumacher, Impulsive-smooth behavior in multimode systems. Part I: State-space and polynomial representations, Automatica 32:747–758, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  13. R.F. Hartl, S.P. Sethi, and R.G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review 37:181–218, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.L.J. Hautus, The formal Laplace transform for smooth linear systems, in Mathematical Systems Theory, G. Marchesini and S.K. Mit-ter, eds., Lect. Notes Econ. Math. Syst. 131, Springer, New York, 29–47, 1976.

    Google Scholar 

  15. M.L.J. Hautus and L.M. Silverman, System structure and singular control, Lin. Alg. Appl. 50:369–402, 1983.

    MathSciNet  MATH  Google Scholar 

  16. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, Complete description of dynamics in the linear complementary-slackness class of hybrid systems, Proc. IEEE Conf. Dec. Contr., San Diego, 1997.

    Google Scholar 

  17. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, Complementarity problems in linear complementarity systems, Proc. American Control Conf. 1998, Philadelphia, 706–710, 1998.

    Google Scholar 

  18. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, Dissipative systems and complementarity conditions, Proc. IEEE Conf. Dec. Contr. 1998, Tampa, FL, 4127–4132, 1998.

    Google Scholar 

  19. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, Mode selection in linear complementarity systems, Proc. IFAC Conf. System Structure and Control 1998, Nantes, 153–158, 1998.

    Google Scholar 

  20. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, The rational complementarity problem, Linear Algebra Appl. 294:93–135, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, Linear cornplementarity systems, SIAM J. Appl. Math. 60:1234–1269, 2000.

    MathSciNet  MATH  Google Scholar 

  22. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland, Projected dynamical systems in a complementarity formalism, Operations Research Letters 2000, to appear.

    Google Scholar 

  23. U. Helmke and J.B. Moore, Optimization and Dynamical Systems, Springer, London, 1994.

    Book  Google Scholar 

  24. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980.

    Google Scholar 

  25. I. Kaneko and J.S. Pang, Some n by do linear complementarity problems, Linear Algebra Appl. 34:297–319, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. W. Kilmister and J.E. Reeve, Rational Mechanics, Longmans, London, 1966.

    Google Scholar 

  27. M. Kuijper, First-Order Representations of Linear Systems, Birkhäuser, Boston, 1994.

    Google Scholar 

  28. D.M.W. Leenaerts and W.M.G. van Bokhoven, Piecewise Linear Modeling and Analysis, Kluwer, Dordrecht, 1998.

    Google Scholar 

  29. Y.J. Lootsma, A.J. van der Schaft, and M.K. Çamhbel, Uniqueness of solutions of relay systems, Automatica 35:467–478, 1999.

    Article  MATH  Google Scholar 

  30. A.S. Morse and W.M. Wonham, Status of noninteracting control, IEEE Trans. Automat. Contr. AC-16:568–581, 1971.

    Google Scholar 

  31. B. oksendal, Stochastic Differential Equations. An Introduction with Applications, 5th ed., Springer, Berlin, 1998.

    Google Scholar 

  32. J. Pérès, Mécanique Générale, Masson & Cie., Paris, 1953.

    MATH  Google Scholar 

  33. F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral Contacts, Wiley, Chichester, 1996.

    Google Scholar 

  34. H. Samelson, R.M. Thrall, and O. Wesler, A partition theorem for Euclidean n-space, Proc. Amer. Math. Soc. 9:805–807, 1958.

    MathSciNet  MATH  Google Scholar 

  35. A.J. van der Schaft and J.M. Schumacher, The complementary-slackness class of hybrid systems, Math. Control Signals Syst. 9:266–301, 1996.

    Article  MATH  Google Scholar 

  36. A.J. van der Schaft and J.M. Schumacher, Complementarity modeling of hybrid systems, IEEE Trans. Auto. Control AC-43:483–490, 1998.

    Google Scholar 

  37. A.J. van der Schaft and J.M. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer, London, 2000.

    Google Scholar 

  38. R. Sznajder and M.S. Gowda, Generalizations of po-and p-properties; extended vertical and horizontal linear complementarity problems, Linear Algebra Appl. 223/224:695–715, 1995.

    Article  MathSciNet  Google Scholar 

  39. J.C. Willems, Dissipative dynamical systems. Part II: Linear systems with quadratic supply rates, Arch. Rational Mech. Anal. 45:352–393, 1972.

    MathSciNet  MATH  Google Scholar 

  40. P. Wilmott, S.D. Howison, and J.N. Dewynne, The Mathematics of Financial Derivatives: A Student Introduction, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  41. W.M. Wonham, Linear Multivariable Control: A Geometric Approach, 3rd ed., Springer Verlag, New York, 1985.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schumacher, H. (2001). Between Mathematical Programming and Systems Theory: Linear Complementarity Systems. In: Colonius, F., Helmke, U., Prätzel-Wolters, D., Wirth, F. (eds) Advances in Mathematical Systems Theory. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0179-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0179-3_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6649-5

  • Online ISBN: 978-1-4612-0179-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics