Skip to main content

Some Remarks on the Statistical Modeling of Chaotic Systems

  • Chapter
Nonlinear Dynamics and Statistics
  • 710 Accesses

Abstract

Many of the issues in modeling nonlinear systems are statistical ones. In this chapter we give a statistician’s viewpoint of the problems of studying and understanding data from real-world dynamical systems. We present some new insights into the possibilities of obtaining consistent estimates for the invariants of a dynamical system, and some new results concerning noise-removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel H.D.I., Brown R., Sidorowitch, L.S. Tsimring (1993), The analysis of observed chaotic data in physical systems, Reviews of modern physics, 65, 1331–1392.

    Article  MathSciNet  Google Scholar 

  • Andel J. (1986), Long Memory Time Series, Kybernetica, 22, 105–123.

    MathSciNet  MATH  Google Scholar 

  • Ashley, R.A., D.M. Patterson (1998), A direct comparison of the BDS, Hinich, and other tests for the presence of nonlinear dependence in time series, Preprint.

    Google Scholar 

  • Badel A.E., O. Michel, A. Hero (1997), Arbres de régression: modélisation non para- métrique et analyse de séries temporelles, Traitement du Signal, to appear.

    Google Scholar 

  • Baitlie R.T., Bolterslev T. and Mikkelsen H.O. (1996), Fractionally Integrated Generalized Autoregressive Conditional Heteroscedasticity, Journal of Econometrics, 31, 307–327.

    Google Scholar 

  • Blanke D., Bosq D. and Guégan D. (1999), Modelization and non-parametric estimation for a dynamical system with noise, Preprint CREST, Paris.

    Google Scholar 

  • Boilerslev T. (1986) Generalized Autoregressive Conditional Heteroscedasticity, Journal of Econometrics, 31, 307–259.

    Article  MathSciNet  Google Scholar 

  • Bosq D. (1989) Non-parametric estimation of a nonlinear filter using a density estimator with a zero-one explosive behaviour in Rd, Statistics and Decisions 7

    Google Scholar 

  • Bosq D., D. Guégan (1995) Non-parametric estimation of the chaotic function and the invariant measure of a dynamical system, Stat. Probe. Letters, 25, 201–212.

    Article  MATH  Google Scholar 

  • Bosq D., D. Guégan, G. Léorat (1999), Statistical estimation of the embedding dimension of a dynamical system, To appear in International Journal of Bifurcations and Chaos.

    Google Scholar 

  • Bowen R. (1978), Israel J. Math., 28, 298–314.

    MathSciNet  Google Scholar 

  • Brandstater A., J Swinney (1987), Phys. Rev. A, 35, 2207.

    Article  Google Scholar 

  • Brock W.A., W.D. Dechert, J.A. Scheinkman, B. LeBaron (1996), A test for independence based on the correlation dimension, Econometrics Review, 15, 197–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Broomhead D.S., G.P. King (1986), Extracting qualitative dynamics from experimental data, Physica D, 20, 217–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Casdagli M. (1989), Nonlinear prediction of chaotic time series, Physica D, 35, 335–356, 1989.

    Google Scholar 

  • Chan K.S. (1989), A note on the ergodicity of a Markov chain, Adv. in Appl. Prob., 21, 702–704.

    Article  MATH  Google Scholar 

  • Chan K.S., H. Tong (1985), On the use of deterministic Lyapunov function for the ergodicity of stochastic differences equations, Adv. in Appl. Prob., 17, 666–678.

    Article  MathSciNet  MATH  Google Scholar 

  • Chauveau T., J. Damon, D. Guégan (1999) Testing for nonlinearity in intra-day finan- cial series: the case of two French stocks, Preprint Caisse des dépots, Paris.

    MATH  Google Scholar 

  • Cutler C. (1997), A general approach to predictive and fractal scaling dimensions in discrete index time series, Fields Institute Communications, 11, 29–48.

    MathSciNet  Google Scholar 

  • Cutler C. (1998), Determinism, (bad) Embeddings and scaling structures in time series, Presentation at the Workshop in Cambridge, U.K.

    Google Scholar 

  • Deissler M., D. Farmer (1992), Deterministic noise amplifiers, Physica D, 55, 155–165.

    Article  MATH  Google Scholar 

  • Denker M. and Keller G. (1986), Rigorous Statistical Procedures for Data from Dynamical Systems, Journal of Statistical Physics, 44, 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Devaney R.L. (1989), An introduction to chaotic dynamical systems, Addison Wesley Pul. Comp., N.Y.

    Google Scholar 

  • Dieholt J. and Guégan D. (1991), Le modèle fl-ARCH, CRAS, Série I, 312, 625–630.

    Google Scholar 

  • Diebolt J. and Guégan D. (1993), Tail Behavior of the Stationary Density of General Nonlinear Autoregressive Process of Order One, J. Appl. Prob., 30, 315–329.

    Article  Google Scholar 

  • Dingh Z. and Granger C.W.J. (1996), Modelling Volatility Persistence of Speculative Returns: A New Approach, Journal of Econometrics, 73, 185–215.

    Article  MathSciNet  Google Scholar 

  • Dingh Z., Granger C.W.J. and Engle R.F. (1993), A Long Memory Property of Stock Market Return and a New Model, Journal of Empirical Finance, 1, 83–106.

    Article  Google Scholar 

  • Eckmann J.P., Ruelle D. (1985), Ergodic theory of chaos and strange attractors, Reviews of Modern Physics, 57, 617–656.

    Article  MathSciNet  Google Scholar 

  • Engle R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 50, 987–1007.

    Article  MathSciNet  MATH  Google Scholar 

  • Farmer J.D., V. Sidorovich (1987), Predicting chaotic time series, Physical Review Letters, 59, 845–848.

    Article  MathSciNet  Google Scholar 

  • Farmer J.D., V. Sidorovich (1988), Exploiting chaos to predict the future and reduce noise, in Evolution, Learning and cognition , eds. Lee, World Scientific press.

    Google Scholar 

  • Ferrara L. and Guégan D. (1999), Forecasting with k-factor Gegenbauer Processes, Preprint CREST, Paris.

    Google Scholar 

  • Ferrara L. and Guégan D. (2000a), Gegenbauer Processes: Estimation and Applications. To appear in Journal of econometrics.

    Google Scholar 

  • Ferrara L. and Guégan D. (2000b), An approach to financial time series by generalized long memory processes. To appear in Advances in Asset Managment, ed. C. Dunis, Kluver Academic Publishers.

    Google Scholar 

  • Finkenstadt B., P. Kuhbier (1995) Forecasting nonlinear economic time series: a simple test to accompany the nearest neighbor method, Empirical economics, 20, 243–263.

    Google Scholar 

  • Flandrin P., Michel O., P. Ruiz (1993), Chaos et analyse non linéaire du signal, Rapport Interne Laboratoire de Physique, E.N.S. Lyon. Dance.

    Google Scholar 

  • Gayraud G. and Guégan D. (1999), Estimation of the chaotic map by regressogram, Preprint CREST, Paris.

    Google Scholar 

  • Giraitis L. and Leipus R. (1995), A Generalized Fractionally Differencing Approach in Long Memory Modelling, Lithuanian Math. Journ., 35, 65–81.

    MathSciNet  Google Scholar 

  • Girosi F., G., Anzelotti (1993), Rates of convergence for radial basis functions and neural networks, in Artificial Neural Network for speech and Vision, R.J. Mammone ed., Chapman and Hall, 97–114.

    Google Scholar 

  • Granger C.W.J. and Joyeux R. (1980), An Introduction to Long Memory Time Series Models and Fractional Differencing, J. T.S.A., 1, 15–29.

    MathSciNet  MATH  Google Scholar 

  • Grassberger P. and I. Procaccia (1983), Measuring the strangeness of strange attractors, Physica D, 9, 189–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Gray H.L., Zhang N. and Woodward A. (1989), On Generalized Fractional Processes, J. T. S. A., 10, 233–257.

    MathSciNet  MATH  Google Scholar 

  • Guégan D. (1983), Une condition d’ergodicité pour des modèles bilinéaires à temps discret„ CRAS Série I, 297–300.

    Google Scholar 

  • Guégan D. (1994), Séries chronologiques non linéaires it temps discret, Ecanomica, Paris.

    Google Scholar 

  • Guégan D. (1997) Non-parametric methods for time series and dynamical systems, in Statistical Challenges in Modern Astronomy II, G.J. Babu and E.D. Feigelson eds., Springer Verlag.

    Google Scholar 

  • Guégan D. (1999), Note on Long Memory Processes with Cyclical Behavior and Heteroscedasticity, Prepublication 99 - -08, 1–21, University of Reims, France.

    Google Scholar 

  • Guégan D. (2000), A new model: the k-factor GIGARCH process. To appear in Journal of signal processing.

    Google Scholar 

  • Guégan D., J. Diebolt (1994), Probabilistic properties of the β-ARCH model, Statistica Sinica, 2, 157–174.

    Google Scholar 

  • Guégan D. and Léorat G. (1997), Consistent estimation to determine embedding dimension in financial data„ The European Journal of Finance, 231–242.

    Google Scholar 

  • Guégan D. and Lisi F. (1997), Predictive dimension: an alternative definition of the embedding dimension„ Preprint CREST 9749, Paris.

    Google Scholar 

  • Guégan D. and Merder L. (1997), Prediction in chaotic time series: Methods and comparisons using simulations, in Signal Analysis and Prediction I, A. Prochazka, J. Uhlir, P. Sovka eds., EURASIP, ICP Press, Prague 1997, 215–218.

    Google Scholar 

  • Guégan D. and Mercier L. (1998a), Stochastic or chaotic dynamics in hight frequency financial data, in Nonlinear modelling hight frequency financial time series, C. Dunis and B. Zhou eds., John Wiley and Sons, 87–107.

    Google Scholar 

  • Guégan D. and Mercier L. (1998b), Forecasting and non-parametric techniques for mixing chaotic time series, in Signal analysis and prediction, Chapter 25, Birkauser, Boston, 363–372.

    Google Scholar 

  • Guégan D. and Nguyen J.M. (1998), The Multiplicative Threshold Model: An Alternative to Detect Breaks and Hidden Cycles on Real Data, Preprint CREST n°9839, 1–13, Paris.

    Google Scholar 

  • Guégan D. and Nguyen J.M. (1999), COMTAR Models: Theory and Applications, Preprint CREST, Paris.

    Google Scholar 

  • Guégan D. and Tchernig R. (2000), Prediction of chaotic time series in presence of measurement error: the importance of initial conditions, to appear in Statistics and Competing.

    Google Scholar 

  • Guégan D., R. Wolff (1999), On non parametric recursive estimators of invariant densities of chaotic maps, Preprint, University of Brisbane, Australia.

    Google Scholar 

  • Hall P. and Wolff R.C.L. (1995), Properties of Invariant Distributions and Lyapunov Exponents for Chaotic Logistic Maps, J.R.S.S., B, 57.

    Google Scholar 

  • Hofbauer F. and Keller G. (1982), Math. Zeitschrift, 180,119–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Hardie W., A.B. Tsybakov (1997) Local polynomial estimators of the volatility function in non-parametric autoregression, J. of Econometrics, 81, 223–242.

    Google Scholar 

  • Hosking J.R.M. (1981), Fractional Diferencing, Biometrika, 88, 165–176.

    Article  MathSciNet  Google Scholar 

  • Katok A., Hasselblatt B. (1995) Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its applications, 54, Cambridge University Press.

    Google Scholar 

  • Kohda T. and Murao K. (1990), Approach of to Time Series Analysis of One Dimensional Chaos Based on Frobenuis-Perron Operator, Trans. Inst. Electron. Inf. and Comm. Eng., E73, 6, 793–800, Japan.

    Google Scholar 

  • Krzyzewski K., Szlenk W. (1969), On invariant measures for expanding differential mappings, Stud. math., 33, 83–92.

    MathSciNet  MATH  Google Scholar 

  • Ladoucette S. (1999), Etude d’un système dynamique chaotique: approche probabiliste, Mémoire de DEA, Université de Reims.

    Google Scholar 

  • Lasota, J. and Mac Key, M.C. (1994), Chaos, fractals and noise: stochastic aspects of dynamics, 2nd ed., Springer Verlag, N.Y.

    MATH  Google Scholar 

  • Lasota A., Yorke J. A. (1973), Trans. Am. Math. Soc., 186, 481.

    Article  MathSciNet  Google Scholar 

  • Lawrance A.J. and Spencer N.M. (1996), Statistical Aspects of Curved Chaotic Map Models and their Stochastic Reversibility, Preprint, University of Birmingham, United Kingdom.

    Google Scholar 

  • Lim K.S., H. Tong, (1980), Threshold Autoregression, limit cycles and cyclical data, J.R.S.S., B 42, 245–292.

    Google Scholar 

  • Lisi F., Nicolis O., Sandri M. (1995), Combining singular - spectrum analysis and neural networks for time series forecasting, Neural processing letters, 2, 6–10.

    Article  Google Scholar 

  • Lu Z.Q., Smith R.L. (1992), Estimating local Lyapunov exponents. To appear in Fields Institute Communication

    Google Scholar 

  • Mac Caffrey D.F., S. Ellner, A.R. Gallant, D.W. Nychka (1992), Estimating Lyapunov exponents of a chaotic system with non parametric regression, J. T.S.A., 87, 682–695.

    Google Scholar 

  • MacKernan D. N. (1997), Generalized Markov coarse graining and the observables of chaos, Thèse de doctorat, U.L.B., Brussels.

    Google Scholar 

  • MacKernan D., Nicolis G. (1993), Generalized Markov Coarse graining and spectral decomposition of chaotic piecewise linear maps, Preprint ULB,Brussels.

    Google Scholar 

  • Masry E. (1991) Multivariate probability density deconvolution for stationary processes, IEEE Trans. Inform. Theory, 37, 1105–1115.

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer D.H. (1984), Approach to Equilibrium for Locally Expanding Maps in Ek, Comm. Math. Phys., 95, 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn S.P., R. Tweedie (1994), Markov chains and stochastic stability, Springer Verlag, N.Y.

    Google Scholar 

  • Meyer D.H. and Roepstorff G. (1983), Strange Attractors and Asymptotic Measures of Discrete-Time Dissipative Systems, Journal of Statistical Physics, 31, 309–326.

    Article  MathSciNet  Google Scholar 

  • Mercier L. (1998) Séries temporelles chaotiques appliquées à la finance: problèmes statistiques et algorithmiques., These de Doctorat, Université Paris IX.

    Google Scholar 

  • Michel O., A. Hero (1995), The structured nonlinear signal modelling and prediction, Preprint.

    Google Scholar 

  • Nicolis G., Nicolis C. (1988), Master equation approach to deterministic chaos, Physical Review A, 38, 427–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Nicolis G., Nicolis C. and MacKernan D. (1993), Stochastic Resonance in Chaotic Dynamics, Journal of Statistical Physics, 70, 127–139.

    Google Scholar 

  • Pesaran M.H., Potter S.M. (1993), Nonlinear dynamics, chaos and econometrics, J. Wiley, New York.

    MATH  Google Scholar 

  • Petrucelli J.D., S.W. Woolford (1984), A threshold AR(1) model, J. Appt. Prob., 21, 270–286.

    Article  Google Scholar 

  • Pham D.T. (1986) The mixing property of bilinear and generalized random coefficient autoregressive models, Stoch. Proc. and their Appl.,23, 291–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson P.M. (1983), Non-parametric estimation for time series models, J. T.S. A. 4, 185–208.

    MATH  Google Scholar 

  • Robinson P.M. (1991), Testing for Strong Serial Correlation and Dynamics Conditional Heteroscedasticity in Multiple Regression, Journal of Econometrics, 47, 67–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle D. (1977), Applications conservant une mesure absolument continue par rapport à dx sur [0,1], Commun. Math. Phys., 55, 477–493.

    Article  MathSciNet  Google Scholar 

  • Samorodnisky V. and Taqqu M. (1994), a-Stable Processes, Chapman and Hall, New York.

    Google Scholar 

  • Smale S. (1967), Bull. Am. Math. Soc., 73,817.

    Article  MathSciNet  Google Scholar 

  • Sauer T. (1998), Embedology, Eckmann-Ruelle matrices and Lyapunov exponents, Presentation to the Workshop in Cambridge, U.K..

    Google Scholar 

  • Silverman B.W. (1993), Density estimation, Chapman and Hall, N.Y.

    Google Scholar 

  • Shub M. (1969), Am. J. Math., 91, 175–199.

    Article  MathSciNet  Google Scholar 

  • Smith L.A. (1992), Identification and prediction of law dimensional dynamics, Physics D, 58, 50–76.

    MATH  Google Scholar 

  • Stark J., D.S. Broomhead, M.E. Davies, J. Huke (1998)? Tokens embedding theorems for forced and stochastic systems, Presentation to the Workshop in Cambridge,U.K..

    Google Scholar 

  • Stockbro K., D.K. Umberger (1992), Forecasting with weighted maps, in Nonlinear modelling, eds. Casdagli and Eubank, Addison-Wesley.

    Google Scholar 

  • Subba Rao T., M.M. Gabr (1984), Bilinear time series, Lecture notes in Statistics,10, Springer.

    Google Scholar 

  • Taylor S. (1986), Modelling Financial Time Series, J. Wiley, Chichester.

    Google Scholar 

  • Ulam S.M., J. Von Neuman (1947), On the combination of stochastic and deterministic properties, Bull. Am. Math. Soc., 53, 1120.

    Google Scholar 

  • Wayne A., Woodward A., Cheng A.C. and Gray H.L. (1998), A k-Factor GARMA Long Memory Model, J.T.S.A., 19, 485–504.

    MATH  Google Scholar 

  • R. Wolff (1992), Local Lyapunov exponents: looking closely at chaos, J.R.S.S B, 54, 353–372.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guegan, D. (2001). Some Remarks on the Statistical Modeling of Chaotic Systems. In: Mees, A.I. (eds) Nonlinear Dynamics and Statistics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0177-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0177-9_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6648-8

  • Online ISBN: 978-1-4612-0177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics