Skip to main content

Extracting Dynamical Behavior via Markov Models

  • Chapter
Nonlinear Dynamics and Statistics

Abstract

Statistical properties of chaotic dynamical systems are difficult to estimate reliably. Using long trajectories as data sets sometimes produces misleading results. It has been recognized for some time that statistical properties are often stable under the addition of a small amount of noise. Rather than analyzing the dynamical system directly, we slightly perturb it to create a Markov model. The analogous statistical properties of the Markov model often have “closed forms” and are easily computed numerically. The Markov construction is observed to provide extremely robust estimates and has the theoretical advantage of allowing one to prove convergence in the noise → 0 limit and produce rigorous error bounds for statistical quantities. We review the latest results and techniques in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ludwig Arnold. Random Dynamical Systems. Springer monographs in mathematics. Springer, Berlin, 1998.

    MATH  Google Scholar 

  2. Philip J. Aston and Michael Dellnitz. The computation of Lyapunov exponents via spatial integration with application to blowout bifurcations. Computer methods in applied mechanics and engineering, 170: 223–237, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. Michael F. Barnsley. Fractals everywhere. Academic Press, Boston, 1988.

    MATH  Google Scholar 

  4. George D. Birkhoff. Proof of the ergodic theorem. Proceedings of the National Academy of Sciences of the USA, 17: 656–60, 1931.

    Article  MATH  Google Scholar 

  5. J. R. Blum and J. I. Rosenblatt. On the moments of recurrence time. Journal of Mathematical Sciences, 2: 1–6, 1967.

    MathSciNet  Google Scholar 

  6. Abraham Boyarsky and Pawel Gdra. Laws of Chaos — Invariant Measures and Dynamical systems in One Dimension. Probability and Its Applications. Birkhäuser, Boston, 1997.

    MATH  Google Scholar 

  7. Michael Dellnitz, Gary Frayland, and Stefan Sertl. On the isolated spectrum of the Perron-Frobenius operator. Nonlinearity, 13 (4): 1171–1188, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. Michael Dellnitz and Andreas Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 75: 293–317, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. Michael Dellnitz and Oliver Junge. Almost invariant sets in Chua’s circuit. International Journal of Bifurcation and Chaos, 7 (11): 2475–2485, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. Michael Dellnitz and Oliver Junge. An adaptive subdivision technique for the approximation of attractors and invariant measures. Computing and Visualization in Science, 1: 63–68, 1998.

    Article  MATH  Google Scholar 

  11. Michael Dellnitz and Oliver Junge. On the approximation of complicated dynamical behavior. SIAM Journal on Numerical Analysis, 36 (2): 491–515, 1999.

    Article  MathSciNet  Google Scholar 

  12. Jiu Ding and Aihui Zhou. Finite approximations of Frobenius-Perron operators. a solution of Ulam’s conjecture to multi-dimensional transformations. Physica D, 92: 61–68, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Francke, D. Plachky, and W. Thomsen. A finitely additive version of Poincaré’s recurrence theorem. In N. Christopeit, K. Helmes, and M. Kohlmann, editors, Stochastic Differential Systems - Proceedings of the 3rd Bad Honnef Conference, June.9–7, 1985, Lecture Notes in Control and Information Science, Berlin, 1985. Springer-Verlag.

    Google Scholar 

  14. Gary Froyland. Finite approximation of Sinai-Bowen-Ruelle measures of Anosov systems in two dimensions. Random & Computational Dynamics, 3 (4): 251–264, 1995.

    MathSciNet  MATH  Google Scholar 

  15. Gary Froyland. Computer-assisted bounds for the rate of decay of correlations. Communications in Mathematical Physics, 189 (1): 237–257, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gary Froyland. Approximating physical invariant measures of mixing dynamical systems in higher dimensions. Nonlinear Analysis, Theory, Methods, & Applications, 32 (7): 831–860, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gary Froyland. Ulam’s method for random interval maps. Nonlinearity, 12 (4): 1029–1052, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gary Froyland. Using Ulam’s method to calculate entropy and other dynamical invariants. Nonlinearity, 12: 79–101, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gary Froyland and Kazuyuki Aihara. Estimating statistics of neuronal dynamics via Markov chains. To appear in Biological Cybernetics.

    Google Scholar 

  20. Gary Froyland and Kazuyuki Aihara. Rigorous numerical estimation of Lyapunov exponents and invariant measures of iterated function systems and random matrix products. Int. J. Bifur. Chaos, 10 (1): 103–122, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gary Froyland, Kevin Judd, and Alistair I. Mees. Estimation of Lyapunov exponents of dynamical systems using a spatial average. Physical Review E,51(4):2844–2855, 1995.

    Article  MathSciNet  Google Scholar 

  22. Gary Froyland, Kevin Judd, Alistair L Mees, and Kenji Murao. Lyapunov exponents and triangulations. In Proceedings of the 1993 International Symposium on Nonlinear Theory and its Applications, Hawaii, December 1993, volume 1, pages 281–286, 1993.

    Google Scholar 

  23. Gary Froyland, Kevin Judd, Alistair 1. Mees, Kenji Murao, and David Watson. Constructing invariant measures from data. International Journal of Bifurcation and Chaos, 5 (4): 1181–1192, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gary Froyland, Oliver Junge, and Gunter Ochs. Rigorous computation of topological entropy with respect to a finite partition. Submitted.

    Google Scholar 

  25. Harry Furstenberg and Yuri Kifer. Random matrix products and measures on projective spaces. Israel Journal of Mathematics, 46 (1–2): 12–32, 1983.

    Article  MathSciNet  Google Scholar 

  26. Pawel Góra. On small stochastic perturbations of mappings of the unit interval. Colloquium Mathematicum, 49 (1): 73–85, 1984.

    MathSciNet  MATH  Google Scholar 

  27. Pawel Gora and Abraham Boyarsky. Absolutely continuous invariant measures for piecewise expanding C 2 transformations in R N. Israel Journal of Mathematics, 67 (3): 272–286, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  29. R. Guder, M. Dellnitz, and E. Kreuzer. An adaptive method for the approximation of the generalized cell mapping. Chaos, Solitons, and Fractals, 8 (4): 525–534, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  30. Rabbijah Guder and Edwin Kreuzer. Adaptive refinement of the generalized cell mapping. Preprint. 1998.

    Google Scholar 

  31. Fern Y. Hunt. A Monte Carlo approach to the approximation of invariant measures. Random & Computational Dynamics, 2 (1): 111–133, 1994.

    MathSciNet  MATH  Google Scholar 

  32. Oliver Junge. Mengenorientierte Methoden zur numerischen Analyse dynamischer Systeme. PhD thesis, University of Paderborn, Paderborn, 1999.

    Google Scholar 

  33. Oliver Junge. Rigorous discretization of subdivision techniques. In Proceedings of Equadiff’99, Berlin, August 1999., 1999.

    Google Scholar 

  34. M. Kac. On the notion of recurrence in discrete stochastic processes. Bulletin of the American Mathematical Society, 53: 1002–1010, 1947.

    Article  MathSciNet  MATH  Google Scholar 

  35. Michael Keane, Rua Murray, and Lai-Sang Young. Computing invariant measures for expanding circle maps. Nonlinearity, 11 (1): 27–46, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. Gerhard Keller. Stochastic stability in some chaotic dynamical systems. Monatshefte ftir Mathematik, 94: 313–353, 1982.

    Article  MATH  Google Scholar 

  37. Gerhard Keller and Carlangelo Liverani. Stability of the spectrum for transfer operators. Preprint, 1998.

    Google Scholar 

  38. Hannes Keller and Gunter Ochs. Numerical approximation of random attractors. Institut für Dynamische Systeme, Universität Bremen, Report Nr. 431, August 1998.

    Google Scholar 

  39. R.Z. Khas’minskii. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory of Probability and its Applications, 8 (1): 1–21, 1963.

    Article  MATH  Google Scholar 

  40. Yuri Kifer. Ergodic Theory of Random Transformations, volume 10 of Progress in Probability and Statistics. Birkhäuser, Boston, 1986.

    Book  MATH  Google Scholar 

  41. Yuri Kifer. Random Perturbations of Dynamical Systems, volume 16 of Progress in Probability and Statistics. Birkhäuser, Boston, 1988.

    Book  Google Scholar 

  42. Andrzej Lasota and Michael C. Mackey. Chaos, fractals, and Noise. Stochastic Aspects of Dynamics, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1994.

    MATH  Google Scholar 

  43. Andrzej Lasota and James A. Yorke. On the existence of invariant measures for piecewise monotonic transformations. Transactions of the American Mathematical Society, 186: 481–488, 1973.

    Article  MathSciNet  Google Scholar 

  44. Tien-Yien Li. Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture. Journal of Approximation Theory, 17: 177–186, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  45. Walter M. Miller. Stability and approximation of invariant measures for a class of nonexpanding transformations. Nonlinear Analysis, 23 (8): 1013–1025, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  46. Walter M. Miller and Fern Y. Hunt. Approximation of attractors for finite dimensional maps by Ulam’s method. Preprint, May 1996.

    Google Scholar 

  47. Rua Murray. Adaptive approximation of invariant measures. Preprint. 1998.

    Google Scholar 

  48. Rua Murray. Existence, mixing and approximation of invariant densities for expanding maps on R d. Preprint. 1998.

    Google Scholar 

  49. Rua Murray. Approximation error for invariant density calculations. Discrete and Continuous Dynamical Systems, 4 (3): 535–557, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Pelikan. Invariant densities for random maps of the interval. Transactions of the American Mathematical Society, 281 (2): 813–825, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  51. Mario Peruggia. Discrete Iterated Function Systems. A K Peters, Wellesley, 1993.

    MATH  Google Scholar 

  52. Karl Petersen. Ergodic Theory, volume 2 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1983.

    MATH  Google Scholar 

  53. David Ruelle. Ergodic theory of differentiable dynamical systems. IRES Publicationes Mathematiques, 50: 275–320, 1979.

    Google Scholar 

  54. Leonard A. Smith. The maintenance of uncertainty. In G. Cini Castagnoli and A. Provenzale, editors, Past and Present Variability of the Solar-Terrestrial system: Measurement, Data Analysis and Theoretical Models, volume CXXXIII of Proceedings of the International School of Physics, pages 177–246, Amsterdam, 1997. Italian Physical Society.

    Google Scholar 

  55. Jaroslav Stark. Iterated function systems as neural networks. Neural Networks, 4: 679–690, 1991.

    Article  Google Scholar 

  56. S. M. Ulam. Problems in Modern Mathematics. Interscience, 1964.

    MATH  Google Scholar 

  57. Bodo Werner and N. Nicolaisen. Uiscretization of circle maps. Zeitscrift f is Angewandte Mathematik und Physik, 49 (6): 869–895, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Wolfowitz. The moments of recurrence time. Proceedings of the American Mathematical Society, 18: 613–614, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  59. Lai-Sang Young. Recurrence times and rates of mixing. Ismel Journal of Mathematics, 110: 153–188, 1999.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Froyland, G. (2001). Extracting Dynamical Behavior via Markov Models. In: Mees, A.I. (eds) Nonlinear Dynamics and Statistics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0177-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0177-9_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6648-8

  • Online ISBN: 978-1-4612-0177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics