Skip to main content

Embedding Theorems, Scaling Structures, and Determinism in Time Series

  • Chapter
Nonlinear Dynamics and Statistics
  • 715 Accesses

Abstract

In this chapter we discuss specific definitions of deterministic and stochastic for stationary time series. Our main purpose in doing so is to create a convenient rigorous framework in which to examine the interplay between state-space reconstruction (embedding theorems), scaling or fractal structures (the Grassberger-Procaccia algorithm), and the predictability properties of time series. Thus the definitions in and of themselves are not as important as the clarity and precision they provide within the context. In spite of the various pitfalls and limitations involved, choosing and adhering to a specific appropriate definition of determinism provides a firm foundation for proving theorems and constructing examples in those areas of chaos theory and time series concerned with reconstruction of the underlying source (or generating mechanism) of a time series. In this chapter we provide some examples where our approach enables us to show that such reconstruction cannot be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., and Tsimring, L.S. (1993). The analysis of observed chaotic data in physical systems. Rev. Modern Phys. 65 1331–1392.

    Article  MathSciNet  Google Scholar 

  2. Billingsley, P. (1978). Ergodic Theory and Information. Kriger, New York.

    Google Scholar 

  3. Casdagli, M.C. (1989). Nonlinear prediction of chaotic time series. Physics D 35 335–356.

    Article  MathSciNet  MATH  Google Scholar 

  4. Casdagli, M.C. (1992). Chaos and deterministic versus stochastic and non-linear modelling. J.R. Statist. Soc. B 54 303–328.

    MathSciNet  Google Scholar 

  5. Cheng, B. and Tong, H. (1992). On consistent nonparametric order determination and chaos. J. R. Statist. Soc. B 54 427–449.

    MathSciNet  MATH  Google Scholar 

  6. Cheng, B. and Tong, H. (1995). Orthogonal projection, embedding dimension, and sample size in chaotic time series from a statistical perspective. In: Chaos and Forecasting (Ed.: H. Tong) World Scientific, Singapore, pp. 1–29.

    Google Scholar 

  7. Cutler, C.D. (1994). A theory of correlation dimension for stationary time series. Philos. Trans. Roy. Soc. London A 348 343–355. Expanded version with proofs in Chaos and Forecasting (1995) (Ed.: H. Tong) World Scientific, Singapore, pp. 31–56.

    Google Scholar 

  8. Cutler, C.D. (1997). A general approach to predictive and fractal scaling dimensions in discrete-index time series. In: Nonlinear Dynamics and Time Series (Eds.: C.D. Cutler and D.T. Kaplan) Fields Institute Communications 11 American Mathematical Society, Providence RI, pp. 29–48.

    Google Scholar 

  9. Cutler, C.D. (1998). Computing pointwise fractal dimension by conditioning in multivariate distributions and time series. To appear in Bernoulli.

    Google Scholar 

  10. Cutler, C.D. and Kaplan, D.T. (Eds.) (1997). Nonlinear Dynamics and Time Series. Fields Institute Communications 11 American Mathematical Society, Providence RI.

    MATH  Google Scholar 

  11. Grassberger, P. and Procaccia, I. (1983). Characterization of strange attractors. Phys. Rev. Lett. 50 346–349.

    Article  MathSciNet  Google Scholar 

  12. Hunt, B.R., Sauer, T., and Yorke, J.A. (1992). Prevalence: A translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. 27 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaplan, D.T. and Glass, L. (1992). Direct test for determinism in a time series. Phys. Rev. Lett. 68 427–430.

    Article  Google Scholar 

  14. Kennel, M.B., Brown, Ft., and Abarbanel, H.D.I. (1992). Determining embedding dimension for phase space reconstruction using a geometrical construction. Phys. Rev. A 45 3403–3411.

    Article  Google Scholar 

  15. Lasota, A. and Mackey, M.C. (1994). Chaos, Fre dais, and Noise. (2nd Ed.) Springer-Verlag, New York.

    Google Scholar 

  16. Osborne, A.R. and Provenzale, A. (1989). Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35 357–381.

    Article  MathSciNet  MATH  Google Scholar 

  17. Packard, N.H., Crutchfield, J.P., Farmer, J.D., and Shaw, R.S. (1980). Geometry from a time series. Phys. Rev. Lett. 45 712–716.

    Article  Google Scholar 

  18. Sauer, T., Yorke, J.A., and Casdagli, M. (1991). Embedology. J. Statist. Phys. 65 579–616.

    Article  MathSciNet  MATH  Google Scholar 

  19. Smith, R.L. (1992). Estimating dimension in noisy chaotic time series. J. R. Statist. Soc. B 54 329–351.

    MATH  Google Scholar 

  20. Smith, R.L. and Tong, H. (Eds.) (1992). Proceedings of the Royal Statistical Society Meeting on Chaos. In: J. R. Statist. Soc. B 54.

    Google Scholar 

  21. Stark, J., Broomhead, D.S., Davies, M.E., and Huke, J. (1996). Tokens embedding theorems for forced and stochastic systems. Submitted to the Proceedings of the 2nd World Congress of Nonlinear Analysis, Athens, Greece.

    Google Scholar 

  22. Tokens, F. (1981). Detecting strange attractors in turbulence. In Lecture Notes in Mathematics. 898 Springer-Verlag, New York, pp. 366–381.

    Google Scholar 

  23. Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach. Oxford University Press, New York.

    MATH  Google Scholar 

  24. Theiler, J. (1991). Some comments on the correlation dimension of 1/f α noise. Phys. Lett. A 155 480–493.

    Article  MathSciNet  Google Scholar 

  25. Wolff, R.C.L. (1990). A note on the behaviour of the correlation integral in the presence of a time series. Biometrika 77 689–697.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cutler, C.D. (2001). Embedding Theorems, Scaling Structures, and Determinism in Time Series. In: Mees, A.I. (eds) Nonlinear Dynamics and Statistics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0177-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0177-9_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6648-8

  • Online ISBN: 978-1-4612-0177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics