Skip to main content

Feynman Integrals Associated with Albeverio-Høegh-Krohn and Laplace Transform Potentials

  • Chapter
Stochastics in Finite and Infinite Dimensions

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let v be a complex measure on R such that and for any c > O. Define a function w by and let u be the Legendre transform of w. Let be the space of generalized functions arising from a white noise space and the function u. It is shown that the Feynman integrand with Albeverio—HØegh-Krohn potential is a generalized function in the space. We give several examples to illustrate the growth functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeverio, S. and Hoegh-Krohn, R. (1976). Mathematical Theory of Feynman Path Integrals, Lecture Notes in Math. 523, Springer-Verlag, Heidelberg.

    Google Scholar 

  2. Asai, N., Kubo, I., and Kuo, H.-H. (1999). Log-concavity, log-convexity, and growth order in white noise analysis, Preprint.

    Google Scholar 

  3. Asai, N., Kubo, I., and Kuo, H.-H. (1999). General characterization theorems and intrinsic topologies in white noise analysis, Preprint.

    Google Scholar 

  4. Cochran, W. G., Kuo, H.-H., and Sengupta, A. (1998). A new class of white noise generalized functions, Infinite Dimensional Analysis, Quantum Probability and Related Topics 1, 43–67.

    Article  MathSciNet  MATH  Google Scholar 

  5. de Falco, D. and Khandekar, D. C. (1988). Applications of white noise calculus to the computation of Feynman integrals, Stochastic Processes and Their Applications 29, 257–266.

    Article  MathSciNet  MATH  Google Scholar 

  6. de Faria, M., Potthoff, J., and Streit, L. (1991). The Feynman integrand as a Hida distribution, J. Math. Phys. 32, 2123–2127.

    Article  MathSciNet  MATH  Google Scholar 

  7. Feynman, R. P. and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, New York.

    MATH  Google Scholar 

  8. Hida, T., Kuo, H.-H., Potthoff, J., and Streit, L. (1993). White Noise: An Infinite Dimensional Calculus, Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  9. Itô, K. (1965). Generalized uniform complex measures in the Hilbertian metric space with their application to the Feynman integral, Proc. Fifth Berkeley Symp. Math. Statist. Prob. II, 145–161.

    Google Scholar 

  10. Kallianpur, G., Kannan, D., and Karandikar, R. L. (1985). Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula, Ann. Inst. Henri Poincaré 21, 323–361.

    MathSciNet  MATH  Google Scholar 

  11. Khandekar, D. C. and Streit, L. (1992). Constructing the Feynman integrand, Annalen der Physik 1, 49–55.

    Article  MathSciNet  Google Scholar 

  12. Kondratiev, Yu. G. and Streit, L. (1992). A remark about a norm estimate for white noise distributions, Ukrainian Math. J. 44, 832–835.

    MathSciNet  Google Scholar 

  13. Kondratiev, Yu. G. and Streit, L. (1993). Spaces of white noise distributions: Constructions, Descriptions, Applications. I, Reports on Math. Phys. 33, 341–366.

    MathSciNet  Google Scholar 

  14. Kubo, Izumi (1983). Itô formula for generalized Brownian functional, Lecture Notes in Control and Information Sciences 49, 156–166, Springer-Verlag, Heidelberg.

    Google Scholar 

  15. Kuna, T., Streit, L., and Westerkamp, W. (1998). Feynman integrals for a class of exponentially growing potentials, J. Math. Phys. 39, 4476–4491.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuo, H.-H. (1983). Donsker’s delta function as a generalized Brownian functional, Lecture Notes in Control and Information Sciences 49, 167–178, Springer-Verlag, Heidelberg.

    Google Scholar 

  17. Kuo, H.-H. (1996). White Noise Distribution Theory, CRC Press, Boca Raton.

    Google Scholar 

  18. Nelson, E. (1964). Feynman integrals and the Schrödinger equation, J. Math. Phys. 5, 332–343.

    Article  MATH  Google Scholar 

  19. Potthoff, J. and Streit, L. (1991). A characterization of Hida distributions, J. Funct. Anal. 101, 212–229.

    Article  MathSciNet  MATH  Google Scholar 

  20. Streit, L. and Hida T. (1983). Generalized Brownian functionals and the Feynman integral, Stochastic Processes and Their Applications 16, 55–69.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asai, N., Kubo, I., Kuo, HH. (2001). Feynman Integrals Associated with Albeverio-Høegh-Krohn and Laplace Transform Potentials. In: Hida, T., Karandikar, R.L., Kunita, H., Rajput, B.S., Watanabe, S., Xiong, J. (eds) Stochastics in Finite and Infinite Dimensions. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0167-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0167-0_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6643-3

  • Online ISBN: 978-1-4612-0167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics