Geometric (Clifford) algebra was motivated by geometric considerations and provides a comprehensive algebraic formalism for the expression of geometric ideas [11]. Recent research has shown that this formalism may be effectively used in algebraic approaches for automated geometric reasoning [ 7,  12,  14,  20,  24]. Starting with an introduction to Clifford algebra for n-dimensional Euclidean geometry, this chapter is mainly concerned with the automatic proving of theorems in geometry and identities in Clifford algebra. We explain how to express geometric concepts and relations and how to formulate geometric problems in the language of Clifford algebra. Several examples are given to illustrate a simple mechanism for deriving Clifford algebraic representations of constructed points, or other geometric objects, and how the representations may be used for proving theorems automatically. With explicit representations of geometric objects and simple substitutions, proving a theorem is reduced finally to verifying whether a Clifford algebraic expression is equal to 0. The latter is accomplished in our case by the techniques of term-rewriting for any fixed n.


Geometric Object Clifford Algebra Computer Algebra System Geometric Algebra Outer Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Dongming Wang

There are no affiliations available

Personalised recommendations