Heat Kernel Analysis on Lie Groups

  • L. Gross
Conference paper
Part of the Progress in Probability book series (PRPR, volume 48)

Abstract

Spaces of maps from one finite dimensional manifold to another finite dimensional manifold provide a naturally occurring source of interesting infinite dimensional manifolds. The study of second order elliptic operators over some of these infinite dimensional manifolds has been the subject of much work in the past forty years, some of it for the purposes of quantum field theory and some of it for the purposes of stochastic analysis or infinite dimensional differential topology. In the latter category the domain manifold has usually been an interval or a circle. In these notes we will survey one particular topic in the analysis of a natural second order elliptic operatorLover such an infinite dimensional manifold.

Keywords

Manifold Convolution Lution Boulder Nite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shigeki Aida, On the Ornstein-Uhlenbeck operators on Wiener-Riemannian manifolds, J. Funct. Anal. 116 (1993), no. 1, 83–110.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Shigeki Aida, Gradient estimates of harmonic functions and the asymptotics of spectral gaps on path spaces, Interdiscip. Inform. Sci. 2 (1996), no. 1, 75–84.MathSciNetMATHGoogle Scholar
  3. [3]
    Shigeki Aida, Logarithmic Sobolev inequalities on loop spaces over compact Riemannian manifolds, Stochastic analysis and applications (Powys, 1995), World Sci. Publishing, River Edge, NJ, 1996, pp. 1–19.Google Scholar
  4. [4]
    Shigeki Aida, Differential calculus on path and loop spaces II. Irreducibility of Dirichlet forms on loop spaces, Bull. Sci. Math. (1998), 635­-666.Google Scholar
  5. [5]
    Shigeki Aida and David Elworthy, Differential calculus on path and loop spaces. I. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 97–102.MathSciNetMATHGoogle Scholar
  6. [6]
    Helene Airault and Paul Malliavin, Integration géométrique sur l’espace de Wiener, Bull. Sci. Math. (2) 112 (1988), 3–52.MathSciNetMATHGoogle Scholar
  7. [7]
    Helene Airault and Paul Malliavin, Integration on loop groups II. Heat equation for the Wiener measure, J. Funct. Anal. 104 (1992),71–109.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Helene Airault and Paul Malliavin, Integration by parts formulas and dilatation vector fields on elliptic probability spaces, Probab. Theory Related Fields 106 (1996), no. 4, 447–494.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Sergio Albeverio, Remi Léandre, and Michael Röckner, Construc­tion of a rotational invariant diffusion on the free loop space, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 3, 287–292.MATHGoogle Scholar
  10. [10]
    John C. Baez, Irving E. Segal, Zhengfang Zhou, Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Uni­versity Press, Princeton, New Jersey, 1992.Google Scholar
  11. [11]
    V. Bargmann, On a Hilbert space of analytic functions and an as­sociated integral transform. Part I. Communications of Pure and Applied Mathematics, 24 (1961) 187–214.MathSciNetCrossRefGoogle Scholar
  12. [12]
    V. Bargmann, Remarks on a Hilbert space of analytic functions, Proc. of the National Academy of Sciences, 48 (1962) 199–204.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    V. Bargmann, Acknowledgement, Proc. of the National Academy of Sciences, 48 (1962) 2204.MathSciNetGoogle Scholar
  14. [14]
    J. M. Bismut, Large deviations and the Malliavin calculus, Birkhäuser, Boston, 1984Google Scholar
  15. [15]
    J. Brüning and M. Lesch, Hilbert complexes, J. of Funct. Anal. 108 (1992), 88–132.MATHCrossRefGoogle Scholar
  16. [16]
    R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914–924.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Mireille Capitaine, Elton P. Hsu, and Michel Ledoux, Martingale representation and a simple proof of logarithmic Sobolev inequali­ties on path spaces, Electron. Comm Probab. 2 (1997), 71–81 (elec­tronic).MathSciNetMATHGoogle Scholar
  18. [18]
    Eric A. Carlen, Some integral identities and inequalities for entire functions and their applications to the coherent state transform, J. of Funct. Anal. 97 (1991), 231–249.MATHCrossRefGoogle Scholar
  19. [19]
    Isaac Chavel, Riemannian geometry ¡ª A modern introduction, Cam­bridge University Press, Cambridge/New York/Melbourne, 1993.MATHGoogle Scholar
  20. [20]
    Ana Bela Cruzeiro and Paul Malliavin, Rep¨¨re mobile et géométrie riemanienne sur les espaces des chemins, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 8, 859–864.MathSciNetMATHGoogle Scholar
  21. [21]
    Ana Bela Cruzeiro and Paul Malliavin, Courbures de l’espace de probabilités d’un mouvement brownien riemannien, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 5, 603–607.MathSciNetMATHGoogle Scholar
  22. [22]
    Ana Bela Cruzeiro and Paul Malliavin, Renormalized differential geometry on path space: structural equation, curvature, J. Funct. Anal. 139 (1996), no. 1, 119­-181.Google Scholar
  23. [23]
    E. B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press, Cambridge/New York/PortChester/Melbourne/Sydney, 1990.Google Scholar
  24. [24]
    B. K. Driver, The non-equivalence of Dirichlet forms on path spaces, Stochastic analysis on infinite-dimensional spaces (Baton Rouge, LA, 1994), Pitman Res. Notes Math. Ser., vol. 310, Longman Sci. Tech., Harlow, 1994, pp. 75–87.Google Scholar
  25. [25]
    B. K. Driver, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal. 110 (1992), no. 2, 272–376.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    B. K. Driver, A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold, Trans. of Amer. Math. Soc., 342 (1994), 375–395.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    B. K. Driver, Towards calculus and geometry on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI, 1995, pp. 405–422.Google Scholar
  28. [28]
    B. K. Driver, On the Kakutani-Itô-Segal-Gross and the Segal-BargmannHall isomorphisms, J. of Funct. Anal. 133 (1995), 69–1MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    B. K. Driver, Integration by parts and quasi-invariance for heat kernel measures on loop groups, J. Funct. Anal. 149 (1997), no. 2, 470­-547.Google Scholar
  30. [30]
    B. K. Driver, Integration by parts for heat kernel measures revisited, J. Math. Pures Appl. (9) 76 (1997), no. 8, 703–737.MathSciNetMATHGoogle Scholar
  31. [31]
    B. K. Driver, A primer on Riemannian geometry and stochastic analysis on path spaces, ETH (Zürich, Switzerland) preprint series. This may be retrieved athttp://math.ucsd.edu /driver/prgsaps.html.
  32. [32]
    B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, in New Trends in Stochastic Analysis (Pro­ceedings of the 1994 Taniguchi Symposium.), K. D. Elworthy, S. Kusuoka, I. Shigekawa, Eds. World Scientific, 1997, 76–106.Google Scholar
  33. [33]
    Bruce K. Driver and Terry Lohrenz, Logarithmic Sobolev inequali­ties for pinned loop groups, J. Funct. Anal. 140 (1996), no. 2, 381-­448.Google Scholar
  34. [34]
    Bruce K. Driver and Michael Röckner, Construction of diffusions on path and loop spaces of compact Riemannian manifolds, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 5, 603–608.MATHGoogle Scholar
  35. [35]
    J. Eells, Integration on Banach manifolds, Proc. 13th Biennial Sem­inar of the Canadian Mathematical Congress, Halifax, (1971), 41-­49.Google Scholar
  36. [36]
    J. Eells and K. D. Elworthy, Wiener integration on certain mani­folds, Some Problems in Non-Linear Analysis, Edizioni Cremonese, Rome, C.I.M.E. IV, (1971), 67–94.Google Scholar
  37. [37]
    K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Note Series 70, Cambridge Univ. Press, Cambridge, England, 1982.Google Scholar
  38. [38]
    K. D. Elworthy and Zhi-Ming Ma, Admissible vector fields and re­lated diffusions on finite-dimensional manifolds, Ukraïn. Mat. Zh. 49 (1997), no. 3, 410–423.MathSciNetMATHGoogle Scholar
  39. [39]
    K. David Elworthy, Yves Le Jan, and Xue-Mei Li, Integration by parts formulae for degenerate diffusion measures on path spaces and diffeomorphism groups, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 8, 921–926.MATHGoogle Scholar
  40. [40]
    Ognian Enchev and Daniel W. Stroock, Towards a Riemannian geometry on the path space over a Riemannian manifold, J. Funct. Anal. 134 (1995), no. 2, 392–416.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    Ognian Enchev and Daniel W. Stroock, Integration by parts for pinned Brownian motion, Math. Res. Lett. 2 (1995), no. 2, 161–169.MathSciNetMATHGoogle Scholar
  42. [42]
    Shi Zan Fang, Inégalité du type de Poincaré sur l’espace des chemins riemanniens, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 3, 257–260.MATHGoogle Scholar
  43. [43]
    Shi Zan Fang, Rotations et quasi-invariance sur l’espace des chemins, Poential Anal. 4 (1995), no. 1, 67–77.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Shi Zan Fang and Jacques Franchi, Platitude de la structure rie­mannienne sur le groupe des chemins et identité d’énergie pour les intégrales stochastiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 10, 1371–1376.MathSciNetMATHGoogle Scholar
  45. [45]
    Shi Zan Fang and Jacques Franchi, De Rham-Hodge-Kodaira operator on loop groups, J. Funct. Anal. 148 (1997), no. 2, 391–407.MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    Shi Zan Fang and Jacques Franchi, A differentiable isomorphism between Wiener space and path group, Séminaire de Probabilités, XXXI, Lecture Notes in Math., vol. 1655, Springer-Verlag, Berlin, 1997, pp. 54–61.MATHGoogle Scholar
  47. [47]
    Shi Zan Fang and Paul Malliavin, Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus, J. Funct. Anal. 118 (1993), no. 1, 249–274.MathSciNetMATHGoogle Scholar
  48. [48]
    V. Fock, Verallgemeinerung und Lösung der Diracschen statistis­chen Gleichung, Zeits. f. Phys. 49 (1928), 339–357.MATHCrossRefGoogle Scholar
  49. [49]
    E. Getzler, Dirichlet forms on loop space, Bull. Sc. math. 2e serie 113 (1989), 151–174.MathSciNetMATHGoogle Scholar
  50. [50]
    E. Getzler, An extension of Gross’s log¡ªSobolev inequality for the loop space of a compact Lie group, in Proc. Conf. on Probability Models in Mathematical Physics, Colorado Springs, 1990 (G. J. Morrow and W-S. Yang, Eds.), World Scientific, N.J. (1991), 73–97.Google Scholar
  51. [51]
    M. Gordina, Holomorphic functions and the heat kernel measure on an infinite dimensional complex orthogonal group, J. of Potential Analysis, 12 (2000), 325–357.MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    M. Gordina, Heat kernel analysis and Cameron-Martin subgroup for in finite dimensional groups, J. of Funct. Anal. 171 (2000), 192–232.MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    L. Gross, Potential theory on Hilbert space, J. of Funct. Anal. 1 (1967), 123–181.MATHCrossRefGoogle Scholar
  54. [54]
    L. Gross, Logarithmic Sobolev inequalities on Lie groups, Illinois J. Math. 36 (1992), 447–490MathSciNetMATHGoogle Scholar
  55. [55]
    L. Gross, Logarithmic Sobolev inequalities on loop groups, J. of Funct. Anal. 102 (1992), 268–313.CrossRefGoogle Scholar
  56. [56]
    L. Gross, Uniqueness of ground states for Schrödinger operators over loop groups, J. of Funct. Anal. 112 (1993), 373–441.MATHCrossRefGoogle Scholar
  57. [57]
    L. Gross, The homogeneous chaos over compact Lie groups, in Stochastic Processes, A Festschrift in Honor of Gopinath Kallian­pur, (S. Cambanis et al., Eds.), Springer-Verlag, New York, 1993, pp. 117–123.Google Scholar
  58. [58]
    L. Gross, Harmonic analysis for the heat kernel measure on compact homogeneous spaces, in Stochastic Analysis on Infinite Dimensional Spaces, (Kunita and Kuo, Eds.), Longman House, Essex England, 1994, pp. 99–110.Google Scholar
  59. [59]
    L. Gross, Analysis on loop groups, in Stochastic Analysis and Applications in Physics, (A. I. Cardoso et al, Eds.) (NATO ASI Series), Kluwer Acad. Publ. 1994, 99–118.CrossRefGoogle Scholar
  60. [60]
    L. Gross, A local Peter-Weyl theorem, Trans. Amer. Math. Soc. 352 (1999), 413–427.CrossRefGoogle Scholar
  61. [61]
    L. Gross, Some norms on universal enveloping algebras, Canadian J. of Mathematics. 50 (2) (1998), 356–377MATHCrossRefGoogle Scholar
  62. [62]
    L. Gross, Harmonic functions on loop groups, Séminaire Bourbaki 1997/98, Astérisque No. 252,(1998), Exp. No. 846, 5, 271–286.Google Scholar
  63. [63]
    L. Gross and P. Malliavin, Hall’s transform and the Segal­Bargmann map, in Ito’s Stochastic calculus and Probability The­ory, (Ikeda, Watanabe, Fukushima, Kunita, Eds.) Springer-Verlag, Tokyo, Berlin, New York, 1996, pp.73–116.CrossRefGoogle Scholar
  64. [64]
    B. Hall, The Segal-Bargmann `coherent state’ transform for compact Lie groups, J. of Funct. Anal. 122 (1994), 103–151.MATHCrossRefGoogle Scholar
  65. [65]
    B. Hall, The inverse Segal-Bargmann transform for compact Lie groups, J. of Funct. Anal. 143 (1997), 98–116.MATHCrossRefGoogle Scholar
  66. [66]
    B. Hall, A new form of the Segal-Bargmann transform for Lie groups of compact type, Canadian J. of Math. 51 (1999), 816–834.MATHCrossRefGoogle Scholar
  67. [67]
    T. Hida, H.-H. Kuo, J. Potthoff, L. Streit, White Noise, an Infi­nite Dimensional Calculus, Kluwer Acad. Pub., Dordrecht/Boston, 1993.Google Scholar
  68. [68]
    Omar Hijab, Hermite functions on compact lie groups I., J. of Func. Anal. 125 (1994), 480–492.MathSciNetMATHCrossRefGoogle Scholar
  69. [69]
    Omar Hijab, Hermite functions on compact lie groups II., J. of Funct. Anal. 133 (1995), 41–49.MathSciNetMATHCrossRefGoogle Scholar
  70. [70]
    Elton P. Hsu, Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal. 134 (1995), no. 2, 417–450.MathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    Elton P. Hsu, Flows and quasi-invariance of the Wiener measure on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI, 1995, pp. 265­-279.Google Scholar
  72. [72]
    Elton P. Hsu, Inégalités de Sobolev logarithmiques sur un espace de chemins, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 1009–1012.MATHGoogle Scholar
  73. [73]
    Elton P. Hsu, Integration by parts in loop spaces, Math. Ann. 309 (1997), no. 2, 331–339.MathSciNetMATHCrossRefGoogle Scholar
  74. [74]
    Elton P. Hsu, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm Math. Phys. 189 (1997), no. 1, 9–16.MATHCrossRefGoogle Scholar
  75. [75]
    Elton P. Hsu, Stochastic Analysis on Manifolds, in the series Graduate Studies in Mathematics, American Mathematical Society, 1999.Google Scholar
  76. [76]
    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North¡ª Holland, New York, 1981.Google Scholar
  77. [77]
    S. Kobayashi and K. Nomizu, Foundations of Differential Geome­try, Vol. 2, John Wiley and Sons (1969).Google Scholar
  78. [78]
    Yu. G. Kondratiev, Spaces of entire functions of an infinite num­ber of variables, connected with the rigging of Fock space, Selecta Mathematica Sovietica 10 (1991), 165–180. (Originally published in 1980.)Google Scholar
  79. [79]
    Paul Krée, Solutions faibles d’équations aux dérivées fonctionnelles, Séminaire Pierre Lelong I (1972/1973), in Lecture Notes in Mathe­matics, (See especially Sec. 3), Vol. 410, Springer, New York/Berlin, 1974, pp. 142–180.Google Scholar
  80. [80]
    Paul Krée, Solutions faibles d’équations aux dérivées fonctionnelles, Séminaire Pierre Lelong II (1973/1974), in Lecture Notes in Mathe­matics, (See especially Sec. 5), Vol. 474, Springer, New York/Berlin, 1975, pp. 16–47.Google Scholar
  81. [81]
    Paul Krée, Calcul d’intégrales et de dérivées en dimension infinie, J. of Funct. Anal. 31 (1979), 150–186.MATHCrossRefGoogle Scholar
  82. [82]
    H. H. Kuo, Integration theory on infinite dimensional manifolds, Trans. Amer. Math. Soc. 159 (1971), 57–78.MathSciNetMATHCrossRefGoogle Scholar
  83. [83]
    H. H. Kuo, Diffusion and Brownian motion on infinite-dimensional manifolds, Trans. Amer. Math. Soc. 169 (1972), 439–457.MathSciNetMATHCrossRefGoogle Scholar
  84. [84]
    H. H. Kuo, Ornstein-Uhlenbeck process on a Riemann- Wiener manifold, Proc. symp. on Stoch. Diff. Eqs., Kyoto 1976, K. Ito, Ed., 187–193.Google Scholar
  85. [85]
    H. H. Kuo, White noise distribution theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996, 378 pages.MATHGoogle Scholar
  86. [86]
    R. Léandre and J. R. Norris, Integration by parts and Cameron-Martin formulas for the free path space of a compact Riemannian manifold, Séminaire de Probabilités, XXXI, Lecture Notes in Math., vol. 1655, Springer, Berlin, 1997, pp. 16–23.Google Scholar
  87. [87]
    Yuh-Jia Lee, Analytic version of test functionals, Fourier transform, and a characterization of measures in white noise calculus, J. of Funct. Anal. 100 (1991), 359–380.MATHCrossRefGoogle Scholar
  88. [88]
    Yuh-Jia Lee, Transformation and Wiener-Itô Decomposition of white noise functionals, Bulletin of the Institute of Mathematics Academia Sinica 21 (1993), 279–291.MathSciNetMATHGoogle Scholar
  89. [89]
    T. J. Lyons and Z. M. Qian, A class of vector fields on path spaces, J. Funct. Anal. 145 (1997), no. 1, 205–223.MathSciNetMATHCrossRefGoogle Scholar
  90. [90]
    Paul Malliavin, Infinite-dimensional analysis, Bull. Sci. Math. (2) 117 (1993), no. 1, 63–90.MathSciNetMATHGoogle Scholar
  91. [91]
    Paul Malliavin, Stochastic analysis,Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 313, Springer-Verlag, Berlin, 1997.Google Scholar
  92. [92]
    M.-P. Malliavin and P. Malliavin,Integration on loop groups. I. Quasi-invariant measures, J. of Funct. Anal. 93 (1990), 207–237.MathSciNetMATHCrossRefGoogle Scholar
  93. [93]
    H. P. McKean, Jr., Stochastic Integrals, Academic Press, NY, 1969.Google Scholar
  94. [94]
    Jeffrey Mitchell, Short time behavior of Hermite functions on com­pact Lie groups, J. of Funct. Anal. 164 (1999), 209–248.MATHCrossRefGoogle Scholar
  95. [95]
    T. T. Nielsen, Bose algebras: The Complex and Real Wave Rep­resentations, Lecture Notes in Mathematics, Vol. 1472, Springer-Verlag, Berlin/New York, 1991.Google Scholar
  96. [96]
    J. R. Norris, Twisted sheets, J. Funct. Anal. 132 (1995), no. 2, 273–334.Google Scholar
  97. [97]
    N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics, Vol. 1577, Springer-Verlag, Berlin/New York, 1994.Google Scholar
  98. [98]
    S. M. Paneitz, J. Pedersen, I. E. Segal, and Z. Zhou, Singular op­erators on Boson fields as forms on spaces of entire functions on Hilbert space, J. Funct. Anal. 100 (1990), 36–58.MathSciNetCrossRefGoogle Scholar
  99. [99]
    J. Pedersen, I. E. Segal, and Z. Zhou, Nonlinear quantum fields in > 4 dimensions and cohomology of the infinite Heisenberg group, Trans. Amer. Math. Soc. 345 (1994), 73–95.MathSciNetMATHGoogle Scholar
  100. [100]
    M. A. Piech, The exterior algebra for Wiemann manifolds, J. of Funct. Anal. 28 (1978), 279–308.MathSciNetMATHCrossRefGoogle Scholar
  101. [101]
    J. Potthoff and L. Streit, A characterization of Hida distributions, J. of Funct. Anal. 101 (1991), 212–229.MathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    Derek W. Robinson, Elliptic Operators and Lie Groups, Clarendon Press, Oxford/New York/Tokyo, 1991.Google Scholar
  103. [103]
    G. Sadasue, Equivalence-singularity dichotomy for the Wiener mea­sures on path groups and loop groups, J. Math. Kyoto Univ. 35 (1995), 653–662.MathSciNetMATHGoogle Scholar
  104. [104]
    I. E. Segal, Mathematical characterization of the physical vacuum for a linear Bose-Einstein field, Illinois J. Math. 6 (1962), 500–523.MATHGoogle Scholar
  105. [105]
    I. E. Segal, Mathematical Problems in Relativistic Quantum Me­chanics, (Proceedings of the AMS Summer Seminar on Applied Mathematics,Boulder,Colorado, 1960) Amer. Math. Soc., Provi­dence, RI, 1963.Google Scholar
  106. [106]
    I. E. Segal, Construction of non-linear local quantum processes I, Ann. of Math. 92 (1970), 462–481.MathSciNetMATHCrossRefGoogle Scholar
  107. [107]
    I. E. Segal, The complex wave representation of the free Boson field, in Topics in functional analysis: essays dedicated to M. G. Krein on the occasion of his 70th birthday, Advances in mathematics : Sup­plementary studies, Vol. 3 (I. Gohberg and M. Kac, Eds.), Academic Press, New York 1978, pp. 321–344.Google Scholar
  108. [108]
    I. Shigekawa, Transformations of the Brownian motion on the Lie group, in Proceedings, Taniguchi International Symposium on Stochastic Analysis, Katata and Kyoto, 1982, (Kiyosi Itô, Ed.). pp. 409–422, North-Holland, Amsterdam, 1984.CrossRefGoogle Scholar
  109. [109]
    I. Shigekawa, DeRham-Hodge-Kodaira’s decomposition on an abstract Wiener space, J. Math. Kyoto Univ. 26 (1986), 191–202.MathSciNetMATHGoogle Scholar
  110. [110]
    R.S. Strichartz,Analysis of the Laplacian on a complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48–79.MathSciNetMATHCrossRefGoogle Scholar
  111. [111]
    Daniel Stroock, Some thoughts about Riemannian structures on path space, Gaz. Math. (1996), no. 68, 31–45.MathSciNetGoogle Scholar
  112. [112]
    Daniel Stroock, Gaussian measures in traditional and not so traditional settings, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 2, 135–155.MathSciNetMATHCrossRefGoogle Scholar
  113. [113]
    D. W. Stroock and O. Zeitouni, Variations on a theme by Bismut, Astérisque (1996), no. 236, 291–301, Hommage ¨¤ P. A. Meyer et J. Neveu.Google Scholar
  114. [114]
    A. S. Üstünel, An Introduction to Analysis on Wiener Space, Lec­ture Notes in Mathematics, 1610, Springer-Verlag, 1995.Google Scholar
  115. [115]
    A. S. Üstünel, Stochastic Analysis on Lie groups, in Progress in probability, vol.42 Birkhauser, 1997.Google Scholar
  116. [116]
    N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geom­etry on groups, Cambridge Tracts in Mathematics, 100. Cambridge Univ. Press, Cambridge, 1992, 156 pp.Google Scholar
  117. [117]
    Fengyu Wang, Logarithmic Sobolev inequalities for diffusion pro­cesses with application to path space, Chinese J. Appl. Probab. Statist. 12 (1996), no. 3, 255–264.MathSciNetMATHGoogle Scholar
  118. [118]
    Norbert Wiener, Differential-space, J. of Math. and Phys. 2 (1923), 131–174.Google Scholar
  119. [119]
    Z. Zhou, The contractivity of the free Hamiltonian semigroup in L2 spaces of entire functions, J. of Funct.Anal. 96 (1991), 407–425.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • L. Gross
    • 1
  1. 1.Department of MathematicsCornell UniversityIthaca

Personalised recommendations