Skip to main content

Integral Operators, Pseudodifferential Operators, and Gabor Frames

  • Chapter
Advances in Gabor Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter illustrates the use of Gabor frame analysis to derive results on the spectral properties of integral and pseudodifferential operators. In particular, we obtain a sufficient condition on the kernel of an integral operator or the symbol of a pseudodifferential operator which implies that the operator is trace-class. This result significantly improves a sufficient condition due to Daubechies and Hörmander.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Birman and M. Z. Solomjak. “Spectral Theory of Self-Adjoint Operators in Hilbert Space.” Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. Mathematics and its Applications (Soviet Series), D. Reidel, Dordrecht (1987).

    Google Scholar 

  2. W. Czaja and Z. Rzeszotnik. Pseudodifferential operators and Gabor frames: spectral asymptotics. Math. Nachr., 233–234 (2002), pp. 77¡ª 88.

    Google Scholar 

  3. I. Daubechies. On the distributions corresponding to bounded operators in the Weyl quantization. Comm. Math. Phys., 75 (1980), pp. 229–238.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 39 (1990) pp. 961–1005.

    Article  MathSciNet  Google Scholar 

  5. I. Daubechies. “Ten Lectures on Wavelets.” SIAM, Philadelphia (1992).

    Google Scholar 

  6. M. Dimassi and J. Sjöstrand, “Spectral Asymptotics in the Semi-Classical Limit.” London Math. Soc. Lecture Note Series 268, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  7. N. Dunford and J. T. Schwartz. “Linear Operators, Part II.” Wiley, New York (1988).

    Google Scholar 

  8. K. Fan. Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Nat. Acad. Sci., 37 (1951), 760–766.

    Google Scholar 

  9. H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In “Gabor Analysis and Algorithms: Theory and Applications,” H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston (1997) pp. 233–266.

    Google Scholar 

  10. H. G. Feichtinger and G. Zimmermann. A Banach space of test functions for Gabor analysis. In “Gabor Analysis and Algorithms: Theory and Applications,” H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston (1997) pp. 123–170.

    Google Scholar 

  11. G. B. Folland. “Harmonic Analysis on Phase Space.” Ann. of Math. Studies, Princeton University Press, Princeton, NJ (1989).

    Google Scholar 

  12. K. Gröchenig. An uncertainty principle related to the Poisson summation formula. Studia Math., 121 (1996), pp. 87–104.

    MathSciNet  MATH  Google Scholar 

  13. K. Gröchenig. “Foundations of Time-Frequency Analysis.” Birkhäuser, Boston (2001).

    Google Scholar 

  14. K. Gröchenig and C. Heil. Modulation spaces and pseudodifferential operators. Integral Equations Operator Theory, 34 (1999), pp. 439–457.

    Google Scholar 

  15. C. Heil, J. Ramanathan, and P. Topiwala. Singular values of compact pseudodifferential operators. J. Funct. Anal., 150 (1997), pp. 426–452.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. E. Heil and D. F. Walnut. Continuous and discrete wavelet transforms. SIAM Review, 31 (1989), pp. 628–666.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Hörmander. The Weyl calculus of pseudodifferential operators. Comm. Pure Appl. Math., 32 (1979), pp. 360–444.

    Article  MathSciNet  Google Scholar 

  18. L. Hörmander. “The Analysis of Linear Partial Differential Operators, I,” Second Edition. Springer-Verlag, Berlin (1990).

    Book  Google Scholar 

  19. R. Howe. Quantum mechanics and partial differential equations. J. Funct. Anal., 38 (1980), pp. 188–254.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Labate. Time-frequency analysis of pseudodifferential operators. Monatshefte Math., 133 (2001), pp. 143–156.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Labate. Pseudodifferential operators on modulation spaces. J. Math. Anal. Appl., 262 (2001), pp. 242–255.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Meyer. Wavelets and operators. In “Different Perspectives on Wavelets” (San Antonio, TX, 1993), I. Daubechies, ed., Proc. Sympos. Appl. Math. Vol. 47, Amer. Math. Soc., Providence, RI (1993), pp. 35–58.

    Google Scholar 

  23. J. C. T. Pool. Mathematical aspects of the Weyl correspondence. J. Math. Phys., 7 (1966), pp. 66–76.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Rochberg and K. Tachizawa. Pseudodifferential operators, Gabor frames, and local trigonometric bases. In “Gabor Analysis and Algorithms: Theory and Applications,” H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston (1997) pp. 171–192.

    Google Scholar 

  25. B. Simon. “Trace ideals and their applications.” Cambridge University Press, Cambridge (1979).

    Google Scholar 

  26. J. Sjöstrand, An algebra of pseudodifferential operators. Math. Res. Lett., 1 (1994), pp. 185–192.

    MathSciNet  MATH  Google Scholar 

  27. E. M. Stein. “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.” Princeton University Press, Princeton, NJ (1993).

    Google Scholar 

  28. K. Tachizawa. The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr., 168 (1994), pp. 263–277.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Tachizawa. The pseudodifferential operators and Wilson bases. J. Math. Pures Appl., 75 (1996), pp. 509–529.

    MathSciNet  MATH  Google Scholar 

  30. M. E. Taylor. “Pseudodifferential Operators.” Princeton University Press, Princeton, NJ (1981).

    Google Scholar 

  31. H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann., 71 (1911), pp. 441–479.

    Article  MathSciNet  Google Scholar 

  32. M. W. Wong. “Weyl Transforms.” Springer¡ªVerlag, New York (1998).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heil, C. (2003). Integral Operators, Pseudodifferential Operators, and Gabor Frames. In: Feichtinger, H.G., Strohmer, T. (eds) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0133-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0133-5_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6627-3

  • Online ISBN: 978-1-4612-0133-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics