Combined Sedimentation and Filtration Process for Cellulase Recovery During Hydrolysis of Lignocellulosic Biomass

  • Jeffrey S. Knutsen
  • Robert H. Davis
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

A combined sedimentation and ultrafiltration process was investigated for recovering cellulase enzymes during the hydrolysis of lignocellulosic biomass. Lignocellulosic particles larger than approx 50 µm in length were first removed via sedimentation using an inclined settler. Ultrafiltration was then used to retain the remaining lignocellulosic particles and the cellulose enzymes, while transmitting fermentable sugars and other small molecules. The permeate flux from the ultrafiltration step for a feed consisting of 0.22 w/v% cellulase is 64 ± 5 L/m2-h, while that for a feed consisting of the settler overflow from a mixture 0.22 w/v% cellulase and 10 wt% lignocellulose fed to the settler is 130 ± 20 L/m2-h. The higher permeate flux in the latter case is presumably due to binding of a portion of the cellulase enzymes to the lignocellulosic particles during hydrolysis and filtration, preventing the enzymes from fouling the membrane. A filter paper activity assay shows little loss in enzymatic activity throughout the combined sedimentation/ultrafiltration separation process.

Keywords

Biomass Sugar Cellulose Hydrolysis Fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd, L. R., Wyman, C. E., and Gerngross, T. U. (1999), Biotechnol. Prog. 15, 777–793.PubMedCrossRefGoogle Scholar
  2. 2.
    McCoy, M. (1998), Chemical Engineering News 76, 29–32.Google Scholar
  3. 3.
    Lee, J. (1997), J. Biotechnol. 56, 1–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Madjeski, H., and Galvez, A. (1999), Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios, National Renewable Energy Laboratory, Golden, CO.CrossRefGoogle Scholar
  5. 5.
    Mores, W. D., Knutsen, J. S., and Davis, R. H. (2001), Appl. Biochem. Biotech. 91–93, 297–309.CrossRefGoogle Scholar
  6. 6.
    Nguyen, Q. A., Keller, F. A., Tucker, M. P., Lombard, C. K., Jenkins, B. M., Yomogida, D. E., and Tiangco, V. M. (1999), Appl. Biochem. Biotech. 77–79, 455–472.CrossRefGoogle Scholar
  7. 7.
    Davis, R. H. and Gecol, H. (1996), J. Multiphase Flow 22, 563–574.CrossRefGoogle Scholar
  8. 8.
    Acrivos, A. and Herbolzheimer, E. (1979), J. Fluid Mechanics 92, 435–457.CrossRefGoogle Scholar
  9. 9.
    Hill, W. D., Rothfus, R. R., and Li, K. (1977), Int. J. Multiphase Flow 3, 561–583.CrossRefGoogle Scholar
  10. 10.
    Batt, B. C., Davis, R. H., and Kompala, D. S. (1990), Biotechnol. Prog. 6, 458–464.PubMedCrossRefGoogle Scholar
  11. 11.
    Henry, K. L., Davis, R. H., and Taylor, A. L. (1990), Biotechnol. Prog. 6, 7–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Davis, R. H. and Parnham, C. S. (1989), Biotech. Bioengr. 33, 767–776.CrossRefGoogle Scholar
  13. 13.
    Stephanopoulos, G., San, K. Y., and Davison, B. H. (1985), Biotechnol. Prog. 1, 250–259.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis, R. H. and Acrivos, A. (1985), Ann. Rev. Fluid Mech. 17, 91–118.CrossRefGoogle Scholar
  15. 15.
    Ziegler, M. T., Thomas, S. R., and Danna, K. J. (2000), Molecular Breeding 6, 37–46.CrossRefGoogle Scholar
  16. 16.
    Wu, Z. W. and Lee, Y. Y. (1998), Appl. Biochem. Biotech. 70–72, 479–492.CrossRefGoogle Scholar
  17. 17.
    Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983), Enzyme Microbial Tech. 5, 82–102.CrossRefGoogle Scholar
  18. 18.
    Saddler, J. N. (1986), Microbiol. Sci. 3, 84–87.PubMedGoogle Scholar
  19. 19.
    Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotech. Bioengr. 36, 275–287.CrossRefGoogle Scholar
  20. 20.
    Ishihara, M., Uemura, S., Hayashi, N., and Shimizu, K. (1991), Biotech. Bioeng. 37, 948–954.CrossRefGoogle Scholar
  21. 21.
    Tan, L. U. L., Yu, E. K. C., Mayers, P., and Saddler, J. N. (1986), Appl. Microbiol. Biotech. 25, 256–261.Google Scholar
  22. 22.
    Henley, R. G., Yang, R. Y. K., and Greenfield, P. F. (1980), Enzyme Microbial Tech. 2, 206–208.CrossRefGoogle Scholar
  23. 23.
    Ohlson, I., Tragardh, G., and Hahnhagerdal, B. (1984), Biotech. Bioeng. 26, 647–653.CrossRefGoogle Scholar
  24. 24.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microbial Tech. 15, 19–25.CrossRefGoogle Scholar
  25. 25.
    Himmel, M. E., Adney, W. S., Baker, J. O., Elander, R., McMillan, J. D., Nieves, R. A., Sheehan, J. J., Thomas, S. R., Vinzant, T. B., and Zhang, M. (1997), Fuels Chemicals from Biomass 666, 2–45.CrossRefGoogle Scholar
  26. 26.
    Ganesh, K., Joshi, J. B., and Sawant, S. B. (2000), Biochem. Eng. J. 4, 137–141.CrossRefGoogle Scholar
  27. 27.
    Kaya, F., Heitmann, J. A., and Joyce, T. W. (1996), Cellulose Chem. Technol. 30, 49–56.Google Scholar
  28. 28.
    Kim, M. H., Lee, S. B., Ryu, D. D. Y., and Reese, E. T. (1982), Enzyme Microbial Tech. 4, 99–103.CrossRefGoogle Scholar
  29. 29.
    Reese, E. T. and Ryu, D. Y. (1980), Enzyme Microbial Tech. 2, 239–240.CrossRefGoogle Scholar
  30. 30.
    Roseiro, J. C., Conceicao, A. C., and Amaralcollaco, M. T. (1993), Bioresour. Technol. 43, 155–160.CrossRefGoogle Scholar
  31. 31.
    McMillan, J. D., Dowe, N., Mohagheghi, A., and Newman, M. (1999), Reducing the Cost of Saccharification and Fermentation by Decreasing the Cellulase Enzyme Loading Required for Cellulose Conversion, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  32. 32.
    Porter, M. C. (1972), Ind. Eng. Chem. Prod. Res. Dev. 11, 233–248.CrossRefGoogle Scholar
  33. 33.
    Ooshima, H., Burns, D. S., and Converse, A. O. (1990), Biotech. Bioeng. 36, 446–452.CrossRefGoogle Scholar
  34. 34.
    Kuberkar, V. T. and Davis, R. H. (1999), Biotechnol Prog. 15, 472–479.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jeffrey S. Knutsen
    • 1
  • Robert H. Davis
    • 1
  1. 1.Department of Chemical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations