Inoculum Studies in Production of Penicillin G Acylase by Bacillus megaterium ATCC 14945

  • Laura M. Pinotti
  • Rosineide G. Silva
  • Roberto C. Giordano
  • Raquel L. C. Giordano
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

This article reports studies concerning the production of penicillin G acylase (PGA) by Bacillus megaterium. This enzyme has industrial use in the hydrolysis of penicillin G to obtain 6-aminopenicillanic acid, an essential intermediate for the production of semisynthetic ß-lactam antibiotics. Although most microorganisms produce the enzyme intracellularly, B. megaterium provides extracellular PGA. The enzyme production by microorganisms involves several steps, resulting in a many operational variables to be studied. The study of the inoculum is an important step to be accomplished, before addressing other issues such as culture optimization and downstream processing. In this study, using a standard inoculum as reference, several runs were performed aiming at the definition of operational conditions in the PGA production. Cell concentration and PGA activity in the production medium were measured after 24, 48, and 72 h of the beginning of the production phase. This study encompasses the duration of the inoculum germination phase and the concentration of cells used to startup the germination. Based on these results, PGA productivity during the production phase was maximized. The selected values for these variables were 1.5 x 107 spores/mL of germination medium, germination during 24 h, and 72 h for the production phase.

Index Entries

Penicillin G acylase Bacillus megaterium inoculum preparation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shewale, J. G. and Sivaraman, H. (1989), Process Biochem. 24(4), 146–154.Google Scholar
  2. 2.
    Chiang, C. and Bennett, R. E. (1967), J. Bacterial. 93 (1), 302–308.Google Scholar
  3. 3.
    Son, H., Mheen, T., Seong, B., and Han, M. H. (1982), J. Gen. Appl. Microbiol. 28, 281–291.CrossRefGoogle Scholar
  4. 4.
    Meevootisom, V. and Saunders, J. R. (1987), Appl. Microbiol. Biotechnol. 25, 372–378.CrossRefGoogle Scholar
  5. 5.
    Senthilvel, S. G. and Pai, J. S. (1996), Biotechnol. Tech. 10(8), 611–614.CrossRefGoogle Scholar
  6. 6.
    Ospina, S. S., Lopez-Munguia, A., Gonzalez, R. L., and Quintero, R. (1992), J. Chem. Tech. Biotechnol. 53, 205–214.Google Scholar
  7. 7.
    Illanes, A., Acevedo, F., Gentina, J. C., Reyes, I., Torres, R., Cartagena, O, Ruiz, A., and Vásquez, M. (1994), Process Biochem. 29, 263–270.CrossRefGoogle Scholar
  8. 8.
    Savidge, T. A. and Cole, M. (1975), Methods Enzymol. 43, 705–721.PubMedCrossRefGoogle Scholar
  9. 9.
    Ohashi, H., Katsuta, Y., Nagashima, M., Kamei, T., and Yano, M. (1989), Appl. Environ. Microbiol. 55(6), 1351–1356.PubMedGoogle Scholar
  10. 10.
    Konstantinovic, M., Marjanovic, N., Ljubijankic, G., and Glisin, V. (1994), Gene 143, 79–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Acevedo, F. and Cooney, C. L. (1973), Biotechnol. Bioeng. 15, 493–503.PubMedCrossRefGoogle Scholar
  12. 12.
    Gentina, J.C., Acevedo, F., and Villagra, M. P. (1994), World J. Microbiol. Biotechnol. 13, 127, 128.Google Scholar
  13. 13.
    Balasingham, K., Warburton, D., Dunnil, P., and Lilly, M.D. (1972), Biochim. Biophys. Acta 276, 250–256.PubMedCrossRefGoogle Scholar
  14. 14.
    Pinotti, L. M., Silva, A. F. S., Silva, R. G., and Giordano, R. L. C. (2000), Appl. Biochem. Biotechnol. 84–86, 655–663.PubMedCrossRefGoogle Scholar
  15. 15.
    Vary, P.S. (1994), Microbiology 140, 1001–1013.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Laura M. Pinotti
    • 1
  • Rosineide G. Silva
    • 1
  • Roberto C. Giordano
    • 1
  • Raquel L. C. Giordano
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations