Performance Testing of Zymomonas mobilis Metabolically Engineered for Cofermentation of Glucose, Xylose, and Arabinose

  • Hugh G. Lawford
  • Joyce D. Rousseau
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biom-ass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has partnered with the University of Toronto to test the C6/C5 cofermenta-tion performance characteristics of the National Renewable Energy Labora-tory’s metabolically engineered Zymomonas mobilis using various biomass hydrolysates. IOGEN’s feedstocks are primarily agricultural wastes such as corn stover and wheat straw. Integrated recombinant Z. mobilis strain AX101 grows on D-xylose and/or L-arabinose as the sole carbon/energy sources and ferments these pentose sugars to ethanol in high yield. Strain AX101 lacks the tetracycline resistance gene that was a common feature of other recombinant Zm constructs. Genomic integration provides reliable cofermentation performance in the absence of antibiotics, another characteristic making strain AX101 attractive for industrial cellulosic ethanol production. In this work, IOGEN’s biomass hydrolysate was simulated by a pure sugar medium containing 6% (w/v) glucose, 3% xylose, and 0.35% arabinose. At a level of 3 g/L (dry solids), corn steep liquor with inorganic nitrogen (0.8 g/L of ammonium chloride or 1.2 g/L of diammonium phosphate) was a cost-effective nutritional supplement. In the absence of acetic acid, the maximum volumetric ethanol productivity of a continuous fermentation at pH 5.0 was 3.54 g/L·h. During prolonged continuous fermentation, the efficiency of sugar-to-ethanol conversion (based on total sugar load) was maintained at >85%. At a level of 0.25% (w/v) acetic acid, the productivity decreased to 1.17 g/L·h at pH 5.5. Unlike integrated, xylose-utilizing rec Zm strain C25, strain AX101 produces less lactic acid as byproduct, owing to the fact that the Escherichia coli arabinose genes are inserted into a region of the host chromosome tentatively assigned to the gene for D-lactic acid dehydrogenase. In pH-controlled batch fermentations with sugar mixtures, the order of sugar exhaustion from the medium was glucose followed by xylose and arabinose. Both the total sugar load and the sugar ratio were shown to be important determinants for efficient cofermentation. Ethanol at a level of 3% (w/v) was implicated as both inhibitory to pentose fermentation and as a potentiator of acetic acid inhibition of pentose fermentation at pH 5.5. The effect of ethanol may have been underestimated in other assessments of acetic acid sensitivity. This work underscores the importance of employing similar assay conditions in making comparative assessments of biocatalyst fermentation performance.

Index Entries

Genomic integration recombinant Zymomonas AX101 arabinose xylose ethanol biomass hydrolysate acetic acid corn steep liquor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charley, R. C., Fein, J. E., Lavers, B. H., Lawford, H. G., and Lawford, G.R. (1983), Biotechnol. Letts. 5, 164–174.CrossRefGoogle Scholar
  2. 2.
    Stevnsborg, N. and Lawford, H. G. (1986), Appl. Microbiol. Biotechnol. 25, 106–115Google Scholar
  3. 3.
    Lawford, H.G. (1988), Appl. Biochem. Biotechnol. 17, 203–209CrossRefGoogle Scholar
  4. 4.
    Lawford, H.G. (1988), VIII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Sanbi Insatsu Co., Tokyo, Japan, pp. 21–27.Google Scholar
  5. 5.
    Beavan, M., Zawadzki, B., Droniuk, R., Fein, J., and Lawford, H. G. (1989), Appl. Biochem. Biotechnol. 20/21, 319–326CrossRefGoogle Scholar
  6. 6.
    Lacis, L. S., and Lawford, H. G. (1989), in Bioenergy-Proceedings of the 7th Canadian Bioenergy R&D Seminar, Hogen, E., ed, NRC Canada, Ottawa, Canada, pp. 411–416.Google Scholar
  7. 7.
    Lawford, H. G. (1987), US patent no. 4,647,534.Google Scholar
  8. 8.
    Laword, H. G. (1989), US patent no. 4,812,410.Google Scholar
  9. 9.
    Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.PubMedCrossRefGoogle Scholar
  10. 10.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.PubMedCrossRefGoogle Scholar
  11. 11.
    Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–249.CrossRefGoogle Scholar
  12. 12.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem Biotechnol. 77–79, 191–204CrossRefGoogle Scholar
  13. 13.
    Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 277–294PubMedCrossRefGoogle Scholar
  14. 14.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J.D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.PubMedCrossRefGoogle Scholar
  15. 15.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.CrossRefGoogle Scholar
  16. 16.
    Sprenger, G. A. (1993), J. Bacteriol. 27, 225–237.Google Scholar
  17. 17.
    Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992), Appl. Microbiol. 38, 354–361.Google Scholar
  18. 18.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.PubMedCrossRefGoogle Scholar
  19. 19.
    Picataggio, S., Zhang, M., Eddy, C. K., Deanda, K., and Finkelstein, M. (1996), US patent no. 5,514,583.Google Scholar
  20. 20.
    Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K., and Finkelstein, M (1998), US patent no. 5,726,053Google Scholar
  21. 21.
    Deanda, K. A., Eddy, C., Zhang, M., and Picataggio, S. (1996), Appl. Environ. Micro. 62, 4465–4470.Google Scholar
  22. 22.
    Zhang, M., Chou, Y. C., Lai, X. K., Milstrey, S., Danielson, N., Evans, K., Mohagheghi, A., and Finkelstein, M. (1999), Abstract no. 2–16.Google Scholar
  23. 23.
    Zhang, M., Chou, Y. C., Mohagheghi, A., Evans, K., Milstrey, S., Lai, X. K., and Finkelstein, M. (2000) Abstract no. 2–03.Google Scholar
  24. 24.
    Zhang, M., Chou, Y-C., Picataggio, S. K., and Finkelstein, M. (1995), US patent no. 5,843,760.Google Scholar
  25. 25.
    Foody, B. F. and Tolan, J. S. (2000), Abstract no. 6–07.Google Scholar
  26. 26.
    Foody, B. F. and Tolan, J. S. (2001), Abstract no. 6–05.Google Scholar
  27. 27.
    Lawford, H. G., Rousseau, J. D., and Tolan, J. S. (2001), Appl. Biochem. Biotechnol. 91–93, 133–146.PubMedCrossRefGoogle Scholar
  28. 28.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A. eds., ACS, Symposium Series 566, American Chemical Society, Washington, DC. pp. 411–437.CrossRefGoogle Scholar
  29. 29.
    Lawford, H. G. and Rousseau, J. D. (2001), Appl. Biochem. Biotechnol. 91–93, 117–131.PubMedCrossRefGoogle Scholar
  30. 30.
    Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.PubMedCrossRefGoogle Scholar
  31. 31.
    Mohagheghi, A., Evans, K., Finkelstein, M., and Zhang, M. (1998), Appl. Biochem. Biotechnol. 70–72, 285–299.PubMedCrossRefGoogle Scholar
  32. 32.
    Mohagheghi, A., Evans, K., Chou, Y. C., and Zhang, M. (2002), Appl. Biochem. Biotechnol. 98–100, 885–898.PubMedCrossRefGoogle Scholar
  33. 33.
    Dennison, E. and Abbas, C. (2000), Abstract no. 2–04.Google Scholar
  34. 34.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.PubMedCrossRefGoogle Scholar
  35. 35.
    Joachimsthal, E. L. and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84–86, 343–356.PubMedCrossRefGoogle Scholar
  36. 36.
    Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations