Effect of kLa on the Production of Glucose 6-Phosphate Dehydrogenase from Saccharomyces cerevisiae Grown by Fermentation Process

  • Daniel Pereira Silva
  • Adalberto PessoaJr.
  • Inês C. Roberto
  • Michele Vitolo
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


In a 5-L fermentor (NBS-MF105), Saccharomyces cerevisiae (0.7 g/L) was inoculated into a liquid medium (pH 4.0) containing 17 g/L of glucose, 2.55 g/L of yeast extract, 4.25 g/L of peptone, 2.04 g/L of Na2HP0412H2O, 4.34 g/L of (NH4)2SO4 and 0.064 g/L of MgSO4 7H2O and aerobically cultivated at 35°C for 22 h. Agitation and aeration were adjusted to attain initial k L a values of 15, 60,135, and 230 h-1. The glucose 6-phosphate dehydrogenase (G6PDH) productivity (Pr G6PDH) obtained for kLa values of 15, 60, 135, and 230 h-1 was 10.6, 31.8, 30.3, and 23.3 U/([L-h]), respectively, whereas the cell productivity (Pr X) for the same k L a values were 0.24,0.69,0.69, and 0.49 g/[L h], respectively. Thus, both events are coupled and depend on the dissolved oxygen in the medium.

Index Entries

Glucose 6-phosphate dehydrogenase Saccharomyces cerevisiae Fermentation volumetric coefficient of oxygen transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmeyer, H. U. (1984), Methods of Enzymatic Analysis, 3rd ed., Verlag Chimie, Weinheim, Germany.Google Scholar
  2. 2.
    Whitaker, J. R. (1991), Food Enzymology, Elsevier Applied Science, NY.Google Scholar
  3. 3.
    Godfrey, T. and West, S. (1996), Industrial Enzymology, 2nd ed. MacMillan Press, London.Google Scholar
  4. 4.
    White, J. (1954), Yeast Technology, Chapman and Hall, London.Google Scholar
  5. 5.
    Wise, W. S. (1951), J. Gen. Microbiol. 5, 167–177.PubMedGoogle Scholar
  6. 6.
    Joslyn, M. A. (1970), Methods in Food Analysis, 2nd ed., Academic Press, NY.Google Scholar
  7. 7.
    Le Duy, A.; Zajic, E. J. (1973), Biotechnol. Bioeng. 15, 805–810.CrossRefGoogle Scholar
  8. 8.
    Borzani, W. (1975), in Engenharia Bioquímica, vol. 3, Borzani, W., Lima, U.A., and Aquarone, E., eds., Universidade de São Paulo, São Paulo, pp. 168–184.Google Scholar
  9. 9.
    Luedeking, R. and Piret, E. L. (1959), J. Biochem. Microbiol. Technol. Eng. 1, 393–401.CrossRefGoogle Scholar
  10. 10.
    Garrett, R. H. and Grisham, C. M. (1995), Biochemistry, Saunders College Publishing, San Diego, CA.Google Scholar
  11. 11.
    Abrahão-Neto, J., Infanti, P., and Vitolo, M. (1996), Applied Biochemistry and Biotechnology 57/58, 407–412.PubMedCrossRefGoogle Scholar
  12. 12.
    Barman, T. E. (1969), Enzyme Handbook, vol.2, Spring-Verlag, NY.Google Scholar
  13. 13.
    Rose, A. H. and Harrison, J. S. (1989), The Yeasts, 2nd ed., Academic Press, NY.Google Scholar
  14. 14.
    Rehm, H. J., and Reed, G. (1993), Biotechnology, 2nd ed., VCH, Weinheim, Germany.CrossRefGoogle Scholar
  15. 15.
    Vitolo, M., Vairo, M. L. R., and Borzani, W. (1985), Biotechnol.Bioeng. 27, 1229–1235.PubMedCrossRefGoogle Scholar
  16. 16.
    Doin, P. A. (1975), in Engenharia Bioquímica, vol.3, Borzani, W., Lima, U. A., and Aquarone, E., eds., Universidade de São Paulo, São Paulo, pp. 112–134.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Daniel Pereira Silva
    • 1
  • Adalberto PessoaJr.
    • 1
  • Inês C. Roberto
    • 2
  • Michele Vitolo
    • 1
  1. 1.Department of Biochemical and Pharmaceutical Technology, Faculty of PharmacyUniversity of São PauloSão PauloBrazil
  2. 2.DEBIQ-FAENQUILLorenaBrazil

Personalised recommendations