Two-Step Steam Pretreatment of Softwood with SO2 Impregnation for Ethanol Production

  • Johanna Söderström
  • Linda Pilcher
  • Mats Galbe
  • Guido Zacchi
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


Two-step steam pretreatment of softwood was investigated with the aim of improving the enzymatic digestibility for ethanol production. In the first step, softwood was impregnated with SO2 and steam pretreated at different severities. The first step was performed at low severity to hydrolyze the hemicellulose and release the sugars into the solution. The combination of time and temperature that yielded the highest amount of hemicellulosic sugars in the solution was determined. In the second step, the washed solid material from the optimized first step was impregnated once more with SO2 and steam pretreated under more severe conditions to enhance the enzymatic digestibility. The investigated temperature range was between 180 and 220°C, and the residence times were 2, 5 and 10 min. The effectiveness of pretreatment was assessed by both enzymatic hydrolysis of the solids and simultaneous saccharification and fermentation (SSF) of the whole slurry after the second pretreatment step, in the presence of antibiotics. For each pretreatment combination, the liquid fraction was fermented to determine any inhibiting effects. At low severity in the second pretreatment step, a high conversion of cellulose was obtained in the enzymatic hydrolysis step, and at a high severity a high conversion of cellulose was obtained in the second pretreatment step. This resulted in an overall yield of sugars that was nearly constant over a wide range of severity. Compared with the one-step steam pretreatment, the two-step steam pretreatment resulted in a higher yield of sugar and in a slightly higher yield of ethanol. The overall sugar yield, when assessed by enzymatic hydrolysis, reached 80%. In the SSF configuration, an overall ethanol yield of 69% was attained.

Index Entries

Enzymatic hydrolysis spruce simultaneous saccharification and fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boussaid, A., Robinson, J., Cai, Y., Gregg, D. J. and Saddler, J. N. (1999), Biotechnol. Bioeng. 64(3), 284–289.PubMedCrossRefGoogle Scholar
  2. 2.
    Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., and Schell, D. J. (1998) Appl. Biochem. Biotechnol. 70–72, 77–87.CrossRefGoogle Scholar
  3. 3.
    Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., and Hahn-Hägerdal, B. (1998) Appl. Biochem. Biotechnol. 70–72, 3–15.CrossRefGoogle Scholar
  4. 4.
    Schell, D. J., Ruth, M. F., and Tucker, M. P. (1999) Appl. Biochem. Biotechnol. 77–79, 67–81.CrossRefGoogle Scholar
  5. 5.
    Schwald, W., Smaridge, T., Chan, M., Breuil, C., and Saddler, J. N. (1989), in Proceedings Workshop Prod., Charact. Appi. Cellul-, Hemicellulose-Lignin-Degrading Enzyme Systems, Coughlan, M. P., ed., Elsevier, pp. 231–242.Google Scholar
  6. 6.
    Wu, M. M., Chang, K., Gregg, D. J., Boussaid, A., Beatson, R. P., and Saddler J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 47–54.CrossRefGoogle Scholar
  7. 7.
    von Sivers, M. and Zacchi, G. (1996), Bioresour. Technol. 56(2,3), 131–140.CrossRefGoogle Scholar
  8. 8.
    Gregg, D. and Saddler, J. N. (1996), Appl. Biochem. Biotechnol. 57/58, 711–727.CrossRefGoogle Scholar
  9. 9.
    Wong, K. K. Y., Deverell, K. F., Mackie, K. L., Clark, T. A., and Donaldson, L. A. (1988), Biotechnol. Bioeng. 31, 447–456.PubMedCrossRefGoogle Scholar
  10. 10.
    Stenberg, K., Tengborg, C., Galbe, M., and Zacchi, G. (1998), J. Chem. Technol. Biotechnol. 71, 299–308.CrossRefGoogle Scholar
  11. 11.
    Clark, T. A., Mackie, K. L., Dare, P. H., and McDonald, A. G. (1989), J. Wood Chem. Technol. 9(2), 135–166.CrossRefGoogle Scholar
  12. 12.
    Overend, R. P. and Chornet, E. (1987), Philos. Trans. R. Soc. Lond. A321(1561), 523–536.Google Scholar
  13. 13.
    Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G., and Rèczey, K. (1997), Enzyme Microb. Technol. 20(4), 286–293.CrossRefGoogle Scholar
  14. 14.
    Heitz, M., Capek-Ménard, E., Koeberle, P. G., Gagné, J., Chornet, E., Overend, R. P., Taylor, J. D., and Yu, E. (1991), Bioresour. Technol. 35(1), 23–32.CrossRefGoogle Scholar
  15. 15.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77–79, 133–142.CrossRefGoogle Scholar
  16. 16.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., and Eddy, F. P. (2000), Appl. Biochem. Biotechnol. 84–86, 561–576.PubMedCrossRefGoogle Scholar
  17. 17.
    Hägglund, E. (1951), Chemistry of Wood, Academic, NY.Google Scholar
  18. 18.
    Mandéis, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.Google Scholar
  19. 19.
    Berghem, L. E. R. and Petterson, L. G. (1974), Eur. J. Biochem. 46(2), 295–305.PubMedCrossRefGoogle Scholar
  20. 20.
    Shevchenko, S. M., Chang, K., Robinson, J., and Saddler, J.N. (2000), Bioresour. Technol. 72(3), 207–211.CrossRefGoogle Scholar
  21. 21.
    Stenberg, K., Galbe, M., and Zacchi, G. (2000), Enzyme Microb. Technol. 26(1), 71–79.CrossRefGoogle Scholar
  22. 22.
    Stenberg, K., Bollók, M., Réczey, K., Galbe, M., and Zacchi, G. (2000), Biotechnol. Bioeng. 68(2), 204–210.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Johanna Söderström
    • 1
  • Linda Pilcher
    • 1
  • Mats Galbe
    • 1
  • Guido Zacchi
    • 1
  1. 1.Department of Chemical Engineering 1Lund UniversityLundSweden

Personalised recommendations