Skip to main content

Applications of Subband and Wavelet Transform in Digital Communications

  • Chapter
Wavelets and Subbands

Abstract

Present-day communications systems are quite complex. In the early days of communication, one just needed a modulator for signal to be transmitted, a radio-frequency (r.f.) amplifier, and the antenna. On the receiving side, one needed a receiving antenna, a preamplifier, and a demodulator. Because of the wireless communication which involves networking, the complexity is steadily growing and it will continue to do so to accommodate wireless access to the Internet and multimedia. Figure 8.1.1 shows the block diagram of a digital communication system. Source encoding, also called data compression, removes the redundancy of the source by representing of the data using the smallest number of binary digits [Pro95]. In many cases, specially for secure Internet traffic, for an example, one uses encryption so that unauthorized detection of signal can be minimized or avoided. In contrast to the source coding which removes redundancy, channel coding introduces some redundancy in a predetermined fashion to improve the fidelity of the signal output. The channel has noise and interference, which causes error in the output. By introducing an n-bit codeword for a k-bit of information when n>k, the bit error rate (BER) can be drastically reduced. The digital modulator maps the binary output of the channel encoder to electrical signal waveforms. The modulator could be binary or M-ary, as also amplitude, phase, or frequency modulated or a combination of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abbate, J. Frankel, R.W. Reed, and P. Das, Ultrasonic gauging and wavelet image processing for wear and erosion mapping, Proc. 1996 QNDE, vol. 18, 1996.

    Google Scholar 

  2. A. Abbate, J. Frankel, R.W. Reed, and P. Das, Wavelet image processing for wear and erosion mapping using an ultrasonic gauging technique, Proc. 1996 Ultrasonic Symposium, pp. 705–707, 1996.

    Google Scholar 

  3. A. Abbate, J. Frankel, and P. Das, Application of wavelet image processing for ultrasonic gaging, Proc. 1997 SPIE Conference on Wavelets, 1997.

    Google Scholar 

  4. A. N. Akansu and R.A. Haddad, Multiresolution Signal Decomposition Transforms, Subbands, Wavelets, Academic Press, New York, 1994.

    Google Scholar 

  5. A.N. Akansu, P. Duhamel, X. Lin, and M. de Courville, Orthogonal transmultiplexers in communication: A review, IEEE Trans. Signal Process., vol. 46, pp. 979–995, 1998.

    Article  Google Scholar 

  6. A.N. Akansu and M.J. Medley eds., Wavelet, Subband and Block Transforms in Communications and Multimedia, Kluwer, Boston, 1999.

    MATH  Google Scholar 

  7. A. Baraniecki and S. Karim, Computational algorithms for discrete wavelet transforms, Proc. SPIE. vol. 1699, pp. 408–419, 1992.

    Article  Google Scholar 

  8. C.K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.

    MATH  Google Scholar 

  9. P. Das and C. DeCusatis, Acousto-optics: Fundamentals and Applications, Artech House, Boston, 1991.

    Google Scholar 

  10. C. DeCusatis, A. Abbate, and P. Das, Wavelet transform based image processing using acousto-optics correlators, Proc. of 1996 SPIE Conf on Wavelet Applications, vol. 2762, pp. 302–313, 1996.

    Google Scholar 

  11. C. DeCusatis, A. Abbate, and P. Das, Scale and rotation invariant pattern recognition using a wavelet image processor, Annual Meeting of the Optical Society of America, 1996.

    Google Scholar 

  12. C. DeCusatis, A. Abbate, D.M. Litynski, and P. Das, Wavelet image processing for optical pattern recognition and feature extraction, Proc. SPIE, vol. 3110, pp. 804–815, 1997.

    Article  Google Scholar 

  13. C. DeCusatis, A. Abbate, and P. Das, Optical techniques for wavelet transform analysis, Proc. Progress in Electromagnetics Research Symposium, p. S19,1997.

    Google Scholar 

  14. C. DeCusatis, A. Abbate, and P. Das, Progressive pattern recognition using the wavelet transform, Int. J. of Optoelectron. vol. 11, p. 425–432, 1997.

    Google Scholar 

  15. D.L. Donoho and I.M. Johnstone, Nonlinear solution for linear-inverse problems by wavelet-vaguelet decomposition, Technical report 403, Stanford University, 1992.

    Google Scholar 

  16. D.L. Donoho, Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data, Proc. Appl. Math., vol. 47, pp. 173–205, 1993.

    MathSciNet  Google Scholar 

  17. D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Am. Statist. Assoc., vol. 90, pp. 1200–1224, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Herley and M. Vetterli, Linear phase wavelets: theory and design, Proc. ICASSP, vol. 3, pp. 2017–2020, 1991.

    Google Scholar 

  19. K. Hetling, G. Saulnier, and P. Das, Optimized filter design for PR-QMF based spread spectrum communications, Proc. IEEE International Conference on Communications, 1995, pp. 1350–1354.

    Google Scholar 

  20. K. Hetling, G. Saulnier, and P. Das, Optimized PR-QMF based codes for multiuser communications, Proc. SPIE, vol. 2491, pp. 248–259, 1995.

    Article  Google Scholar 

  21. K. Hetling, G. Saulnier, and P. Das, PR-QMF based codes for multipath/multiuser communications, IEEE Global Telecommunications Conference, 1995.

    Google Scholar 

  22. K. Hetling, G. Saulnier, and P. Das, Performance of filter bank-ased spreading codes for multipath/multiuser interference, in SPIE Proceedings on Wavelet Applications, 1996.

    Google Scholar 

  23. K. Hetling, Multirate Filter Banks for Spread Spectrum Waveform Design, PhD thesis, Rensselaer Polytechnic Institute, 1996.

    Google Scholar 

  24. K. Hetling, G. Saulnier, and P. Das, Performance of filter bank-based spreading codes for cellular and micro-cellular channels, in SPIE Proceedings on Wavelet Applications, 1997.

    Google Scholar 

  25. J. Jian, C.Z. Chen, C.C. Chen, and G. Seethraraman, Image data compression methodologies using discrete wavelets, Proc. SPIE, vol. 2762, pp. 188–199, 1996.

    Article  Google Scholar 

  26. I.M. Johnstone and B.W. Silverman, Wavelet threshold estimators for data with correlated noise, Technical Report, Stanford University, 1995.

    Google Scholar 

  27. S. Mallat, Wavelets for a vision, Proc. IEEE, vol. 84, n. 4, pp. 604–614, 1996.

    Article  Google Scholar 

  28. Wavelet Toolbox User’s Guide, The Mathworks Inc., 1996.

    Google Scholar 

  29. M.J. Medley, Adaptive Narrow-Band Interference Suppression Using Linear Transforms and Multirate Filter Banks, PhD thesis, Rensselaer Polytechnic Institute, 1995.

    Google Scholar 

  30. M.J. Medley, G.J. Saulnier, and P.K. Das, The application of wavelet-domain adaptive filtering to spread spectrum communications, SPIE Proc. on Wavelet Applications for Dual-Use, vol. 2491, pp. 233–247, 1995.

    Google Scholar 

  31. M.J. Medley, G.J. Saulnier, and P.K. Das, Narrow-band interference excision in spread spectrum systems using lapped transforms, IEEE Trans. Commun., vol. 45, pp. 1444–1455, 1997.

    Article  Google Scholar 

  32. M. Mettke, M.J. Medley, G.J. Saulnier, and P.K. Das, Wavelet transform excision using IIR filters in spread spectrum communication systems, IEEE Global Communications Conference, 1994, pp. 1627–1631.

    Google Scholar 

  33. L.B. Milstein and P.K. Das, An analysis of a real-time transform domain filtering digital communication system, Part I: Narrowband interference rejection, IEEE Trans. Commun., vol. 28, pp. 816–824, 1980.

    Article  MATH  Google Scholar 

  34. L.B. Milstein and P.K. Das, An analysis of a real-time transform domain filtering digital communication system, Part II: Wideband interference rejection, IEEE Trans. on Commun., vol. 31, pp. 21–27, 1983.

    Article  Google Scholar 

  35. R.T. Odgen, Essential wavelets for statistical applications and data analysis, Birkhauser Press, Boston, 1997.

    Google Scholar 

  36. J.G. Proakis, Digital Communications, 3rd ed., McGraw-Hill, New York, 1995.

    Google Scholar 

  37. H. Resnikoff, Wavelets and adaptive signal processing, Opt. Eng. vol. 31, pp. 1229–1234, 1992.

    Article  Google Scholar 

  38. G. Saulnier, M.J. Medley, and P. Das, Wavelets and filter banks in spread spectrum communications, in Subband and Wavelets Transforms, edited by A.N. Akansu and N.J.T. Smith, Kluwer, Boston, 1995.

    Google Scholar 

  39. P. Schröder, Wavelets in computer graphics, Proc. IEEE, vol. 84, n. 4, pp. 615–625, 1996.

    Article  Google Scholar 

  40. G. Strang, Wavelets and dilation equation: A brief introduction, SIAM Rev. vol. 31, pp. 614–627, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Strang, Wavelets, American Scientist, vol. 82, pp. 250–255,1994.

    Google Scholar 

  42. M. Vetterli and C. Herley, Wavelets and filter banks: theory and design, IEEE Trans. Signal Proc., vol. 40, no. 9, 1992.

    Google Scholar 

  43. M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, AK Peters, Wellesley, 1994.

    MATH  Google Scholar 

  44. J. W. Woods. Ed., Subband Image Coding, Kluwer, Boston, 1991.

    MATH  Google Scholar 

  45. G.W. Wornell and A.V. Oppenheim, Wavelet-based representations for a class of self-similar signals with applications to fractal modulation, IEEE Trans. Inform. Theory, vol. 38, pp. 785–800, 1992.

    Article  Google Scholar 

  46. G.W. Wornell, Emerging applications of mutirate signal processing and wavelets in digital communications, Proc. IEEE, vol. 84, pp. 586–603, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abbate, A., DeCusatis, C.M., Das, P.K. (2002). Applications of Subband and Wavelet Transform in Digital Communications. In: Wavelets and Subbands. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0113-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0113-7_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6618-1

  • Online ISBN: 978-1-4612-0113-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics