Skip to main content

Development and Differentiation of Vascular Smooth Muscle

  • Chapter
Assembly of the Vasculature and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

After a network of large and small endothelial channels suitable to conduct the nascent embryonic circulation has formed, the next step in vascular development is the assembly of a tunica media to provide mechanical support, prevent hemorrhage and rupture, and confer vasomotor and neurohumoral control of the circulation. Formation of the tunica media is a stepwise process involving recruitment and clustering of mesenchymal cells around endothelial vessels, activation of smooth muscle specific gene transcription, production of an elastin-and collagen-rich extracellular matrix, organization of smooth muscle cells (SMCs) into layers, and formation of an adventitia consisting of nerves, capillaries, fibroblasts, and connective tissue. Reciprocal signaling between endothelial cells and mesenchymal cells is critical for assembly of the tunica media, both to ensure endothelial cell survival and maturation and to stimulate mesenchymal cell differentiation and matrix production. The exchange of signals between endothelial cells and mesenchymal cells that is initiated during vascular development continues throughout life to ensure that changing target tissue demands for perfusion are coupled with corresponding adaptations in the structure and function of the tunica media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovitch, R., Neeman, M., Reich, R., et al. (1998). Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Lett 425:441–447.

    Article  CAS  PubMed  Google Scholar 

  2. Adam, P.J., Regan, C.P., Hautmann, M.B., Owens, G.K. (2000). Positive and negative acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22a in vivo. J Biol Chem 275:37798–37806.

    Article  CAS  Google Scholar 

  3. Adams, J., Watt, F. (1993). Regulation of development and differentiation by the extra-cellular matrix. Development 117:1183–1198.

    CAS  PubMed  Google Scholar 

  4. Adams, R., Wilkinson, G., Weiss, C., et al. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis and sprouting angiogenesis. Genes Dev 13:295–306.

    Article  CAS  PubMed  Google Scholar 

  5. Altschul, R. (1944). Histologic analysis of arateriosclerosis. Arch Pathol 38:305–312.

    Google Scholar 

  6. Arciniegas, E., Ponce, L., Hartt, Y., Graterol, A., Carlini, R.G. (2000). Intimal thickening involves transdifferentiation of embryonic endothelial cells. Anat Rec 258:47–57.

    Article  CAS  PubMed  Google Scholar 

  7. Arciniegas, E., Sutton, A., Allen, T., Schor, A. (1992). Transforming growth factor beta-1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J Cell Sci 103:521–529.

    CAS  PubMed  Google Scholar 

  8. Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17:6289–6299.

    Article  CAS  PubMed  Google Scholar 

  9. Asahara, T., Chen, D., Takahashi, T., et al. (1998). Tie2 receptor ligands, angiopoietin1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240.

    Article  CAS  PubMed  Google Scholar 

  10. Bazzoni, G., Dejana, E., Lampugnani, M.G. (1999). Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Curr Opin Cell Biol 11:573–581.

    Article  CAS  PubMed  Google Scholar 

  11. Benjamin, L., Golijanin, D., Itin, A., Pode, D., Keshet, E. (1999). Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165.

    Article  CAS  PubMed  Google Scholar 

  12. Benjamin, L., Hemo, I., Keshet, E. (1998). A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598.

    CAS  PubMed  Google Scholar 

  13. Blank, R., McQuinn, T., Yin, K., et al. (1992). Elements of the smooth muscle alpha-actin promoter required in cis for transcriptional activation in smooth muscle. Evidence for cell type-specific regulation. J Biol Chem 267:984–989.

    CAS  PubMed  Google Scholar 

  14. Bressen, G., Daga-Gordini, D., Colombatti, A., Castellani, I., Marigo, V., Volpin, D. (1993). Emilin, a component of elastic fibers preferentially located at the elastinmicrofibrils interface. J Cell Biol 121:201–212.

    Article  Google Scholar 

  15. Browning, C., Culberson, D., Aragon, I., et al. (1998). The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev Biol 194:18–37.

    Article  CAS  PubMed  Google Scholar 

  16. Camenisch, T., Spicer, A., Brehm-Gibson, T., et al. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360.

    Article  CAS  PubMed  Google Scholar 

  17. Carey, D. (1991). Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu Rev Physiol 53:161–177.

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395.

    Article  CAS  PubMed  Google Scholar 

  19. Carmeliet, P., Collen, D. (1997). Genetic analysis of blood vessel formation. Trends Cardiovasc Med 7:271–281.

    Article  CAS  PubMed  Google Scholar 

  20. Carmeliet, P., Ferreira, V., Breier, G., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439.

    Article  CAS  PubMed  Google Scholar 

  21. Clark, E., Clark, E. (1940). Microscopic observations on the extraendothelial cells of living mammalian blood vessels. Am J Anat 66:1–49.

    Article  Google Scholar 

  22. Cook, C., Weiser, M., Schwartz, P., Jones, C., Majack, R. (1994). Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ Res 74:189–196.

    Article  CAS  PubMed  Google Scholar 

  23. Cox, C.M., Poole, T.J. (2000). Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo. Dev Dyn 218:371–382.

    Article  CAS  PubMed  Google Scholar 

  24. Croissant, J., Kim, J., Eichele, G., et al. (1996). Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev Biol 177:250–264.

    Article  CAS  PubMed  Google Scholar 

  25. Crosby, J., Seifert, R., Soriano, P., Bowen-Pope, D.F. (1998). Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Nat Genet 18:385–388.

    Article  CAS  PubMed  Google Scholar 

  26. Davies, P. (1995). Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–560.

    CAS  PubMed  Google Scholar 

  27. De Angelis, L., Berghella, L., Coletta, M., et al. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–877.

    Article  PubMed  Google Scholar 

  28. de la Pompa, J.L., Timmerman, L.A., Takimoto, H., et al. (1998). Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392: 182–186.

    Article  Google Scholar 

  29. DeRuiter, M., Poelmann, R., VanMunsteren, J., Mironov, V., Markwald, R., Gittenberger-de Groot, A.C. (1997). Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451.

    Article  CAS  PubMed  Google Scholar 

  30. Dickson, M., Martin, J., Cousins, F., Kulkarni, A., Karlsson, S., Akhurst, R. (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-(31 knock out mice. Development 121:1845–1854.

    CAS  PubMed  Google Scholar 

  31. Dietz, H., Cutting, G., Pyeritz, R., et al. (1991). Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339.

    Article  CAS  PubMed  Google Scholar 

  32. Duband, J., Gimona, M., Scatena, M., Sartore, S., Small, J. (1993). Calponin and SM 22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Differentiation 55:1–11.

    Article  CAS  PubMed  Google Scholar 

  33. Eisenberg, L., Markwald, R. (1995). Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6.

    Article  CAS  PubMed  Google Scholar 

  34. Ferrara, N., Carver-Moore, K., Chen, H., et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442.

    Article  CAS  PubMed  Google Scholar 

  35. Folkman, J., D’Amore, P. (1996). Blood vessel formation: what is its molecular basis? Cell 87:1153–1155.

    Article  CAS  PubMed  Google Scholar 

  36. Gallagher, B., Sakai, L., Little, C. (1993). Fibrillin delineates the primary axis of the early avian embryo. Dev Dyn 196:70–78.

    Article  CAS  PubMed  Google Scholar 

  37. Galvin, K., Donovan, M., Lynch, C., et al. (2000). A role for Smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174.

    Article  CAS  PubMed  Google Scholar 

  38. Gao, Y., Li, M., Chen, W., Simons, M. (2000). Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. J Cell Physiol 184:373–379.

    Article  CAS  PubMed  Google Scholar 

  39. Gittenberger-de Groot, A., DeRuiter, M., Bergwerff, M., Poelmann, R. (1999). Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 19:1589–1594.

    Article  CAS  PubMed  Google Scholar 

  40. Gittenberger-de Groot, A., Vrancken Peeters, M., Mentink, M., Gourdie, R., Poelmann, R. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052.

    Article  CAS  PubMed  Google Scholar 

  41. Gourdie, R., Mima, T., Thompson, R., Mikawa, T. (1995). Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431.

    CAS  PubMed  Google Scholar 

  42. Gourdie, R., Wei, Y., Kim, D., Klatt, S., Mikawa, T. (1998). Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA 95:6815–6818.

    Article  CAS  PubMed  Google Scholar 

  43. Hautmann, M., Thompson, M., Swarz, E., Olson, E., Owens, G. (1997). Angiotensin II-induced stimulation of smooth muscle a-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ Res 81:600–610.

    Article  CAS  PubMed  Google Scholar 

  44. Hautmann, M.B., Madsen, C.S., Mack, C.P., Owens, G.K. (1998). Substitution of the degenerate smooth muscle (SM) alpha-actin CC(A/T-rich)6GG elements with c-fos serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin II inducibility. J Biol Chem 273:8398–8406.

    Article  CAS  PubMed  Google Scholar 

  45. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., Betsholtz, C. (1999). Role of PDGF-B and PDGFR-ß in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055.

    CAS  PubMed  Google Scholar 

  46. Herring, B., Smith, A. (1996). Telokin expression is mediated by a smooth muscle cell-specific promoter. Am J Physiol 270:C1656–1665.

    CAS  PubMed  Google Scholar 

  47. Hirschi, K., D’Amore, P. (1996). Pericytes in the microvasculature. Cardiovasc Res 32:687–698.

    CAS  PubMed  Google Scholar 

  48. Holzenberger, M., Lievre, C., Robert, L. (1993). Tropoelastin gene expression in the developing vascular system of the chicken: an in situ hybridization study. Anat Embryol (Berl) 188:481–492.

    Article  CAS  Google Scholar 

  49. Hungerford, J., Little, C. (1999). Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36:2–27.

    Article  CAS  PubMed  Google Scholar 

  50. Hungerford, J., Owens, G., Aargraves, W., Little, C. (1996). Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular markers. Dev Biol 178:375–392.

    Article  CAS  PubMed  Google Scholar 

  51. Hyer, J., Johansen, M., Prasad, A., et al. (1999). Induction of Purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci USA 96:13214–13218.

    Article  CAS  PubMed  Google Scholar 

  52. Johansen, F., Prywes, R. (1995). Serum response factor: transcriptional regulation of genes induced by growth factors and differentiation. Biochim Biophys Acta 1242:1–10.

    PubMed  Google Scholar 

  53. Katoh, Y., Loukianov, E., Kopras, E., Zilberman, A., Periasamy, M. (1994). Identification of functional promoter elements in the rabbit smooth muscle myosin heavy chain gene. J Biol Chem 269:30538–30545.

    CAS  PubMed  Google Scholar 

  54. Kim, S., Ip, H., Lu, M., Clendenin, C., Parmacek, M. (1997). A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages. Mol Cell Biol 17:2266–2278.

    CAS  PubMed  Google Scholar 

  55. Koyama, H., Raines, E., Bornfeldt, K., Roberts, J., Ross, R. (1996). Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078.

    Article  CAS  PubMed  Google Scholar 

  56. Krebs, L.T., Xue, Y., Norton, C.R., et al. (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352.

    CAS  PubMed  Google Scholar 

  57. Kruger, O., Plum, A., Kim, J., et al. (2000). Defective vascular development in connexin 45-deficient mice. Development 127:4179–4193.

    CAS  PubMed  Google Scholar 

  58. Kuo, C., Veselits, M., Barton, K., Lu, M., Clendenin, C., Leiden, J. (1997). The LKLF transcription factor is required for normal tunica media formation and blood vessel stabalization during murine embryogenesis. Genes Dev 11:2996–3006.

    Article  CAS  PubMed  Google Scholar 

  59. Landerholm, T., Dong, X.-R., Lu, J., Belaguli, N., Schwartz, R., Majesky, M. (1999). A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development 126:2053–2062.

    CAS  PubMed  Google Scholar 

  60. LeLievre, C., Le Douarin, N. (1975). Mesenchymal derivatives of the neural crest: analysis of chimeric quail and chick embryos. J Embryol Exp Morphol 34:125–154.

    CAS  Google Scholar 

  61. Li, D., Brooke, B., Davis, E., et al. (1998). Elastin is an essential determinant of arterial morphogenesis. Nature 393:279–280.

    Google Scholar 

  62. Li, D., Faury, G., Talyor, D., et al. (1998). Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest 102:1783–1787.

    Article  CAS  PubMed  Google Scholar 

  63. Li, D., Sorensen, L., Brooke, B., et al. (1999). Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537.

    Article  CAS  PubMed  Google Scholar 

  64. Li, L., Liu, Z., Mercer, B., Overbeek, P., Olson, E. (1997). Evidence for serum response factor-mediated regulatory networks governing SM22a transcription in smooth, skeletal and cardiac muscle cells. Dev Biol 187:311–321.

    Article  CAS  PubMed  Google Scholar 

  65. Lilly, B., Zhao, B., Ranganayakulu, G., Paterson, B., Schulz, R., Olson, E. (1995). Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693.

    Article  CAS  PubMed  Google Scholar 

  66. Lindahl, P., Bostrom, H., Karlsson, L., Hellstrom, M., Kalen, M., Betsholtz, C. (1999). Role of platelet-derived growth factors in angiogenesis and alveogenesis. Curr Top Pathol 93:27–33.

    Article  CAS  PubMed  Google Scholar 

  67. Lindahl, P., Johansson, B., Leveen, P., Betsholtz, C. (1997). Pericyte loss and microanerysm formation in PDGF-B-deficient mice. Science 277:242–245.

    Article  CAS  PubMed  Google Scholar 

  68. Little, T., Beyer, E., Duling, B. (1995). Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268:H729–H739.

    CAS  PubMed  Google Scholar 

  69. Madsen, C., Regan, C., Hungerford, J., White, S., Manabe, I., Owens, G. (1998). Smooth muscle-specific expression of the smooth muscle myosin heavy chain gene in transgenic mice requires 5’-flanking and first intronic DNA sequence. Circ Res 82:908–917.

    Article  CAS  PubMed  Google Scholar 

  70. Majesky, M., Schwartz, S. (1997). An origin for smooth muscle from endothelium? Circ Res 80:601–603.

    CAS  PubMed  Google Scholar 

  71. Markwald, R., Mjaatvedt, C., Krug, E., Sinning, A. (1990). Inductive interactions in heart development. Role of cardiac adherons in cushion tissue formation. Ann NY Acad Sci 588:13–25.

    Article  CAS  PubMed  Google Scholar 

  72. Massague, J. (1998). TGF-13 signal transduction. Annu Rev Biochem 67:753–791.

    Article  CAS  PubMed  Google Scholar 

  73. McAllister, K., Grogg, K., Johnson, D., et al. (1994). Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351.

    Article  CAS  PubMed  Google Scholar 

  74. Mecham, R., Stenmark, K., Parks, W. (1991). Connective tissue production by vascular smooth muscle in development and disease. Chest 99:43S–47S.

    Article  CAS  PubMed  Google Scholar 

  75. Miano, J., Cserjesi, P., Ligon, K., Periasamy, M., Olson, E. (1994). Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circ Res 75:803–812.

    Article  CAS  PubMed  Google Scholar 

  76. Miano, J.M., Carlson, M.J., Spencer, J.A., Misra, R.P. (2000). Serum response factor-dependent regulation of the smooth muscle calponin gene. J Biol Chem 275:98149822.

    Google Scholar 

  77. Mikawa, T., Gourdie, R. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232.

    Article  CAS  PubMed  Google Scholar 

  78. Moessler, H., Mericskay, M., Li, Z., Nagl, S., Paulin, D., Small, J. (1996). The SM 22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 122:2415–2425.

    CAS  PubMed  Google Scholar 

  79. Obata, H., Hayashi, K., Nishida, W., et al. (1997). Smooth muscle cell phenotype-dependent transcriptional regulation of the alphal integrin gene. J Biol Chem 272: 26643–26651.

    Article  CAS  PubMed  Google Scholar 

  80. Ordahl, C. (1999). Myogenic shape-shifters. J Cell Biol 147:695–697.

    Article  CAS  PubMed  Google Scholar 

  81. Owens, G. (1995). Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517.

    CAS  PubMed  Google Scholar 

  82. Pardanaud, L., Altmann, C., Kitos, P., Dieterlen-Lievre, F., Buck, C. (1987). Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349.

    CAS  PubMed  Google Scholar 

  83. Park, E., Putnam, E., Chitayat, D., Child, A., Milewicz, D. (1998). Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development. Am J Med Genet 78:350–355.

    Article  CAS  PubMed  Google Scholar 

  84. Price, R., Owens, G., Skalak, T. (1994). Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation: evidence that capillary arterialization proceeds from terminal arterioles. Circ Res 75:520–527.

    Article  CAS  PubMed  Google Scholar 

  85. Qian, J., Kumar, A., Szucsik, J., Lessard, J. (1996). Tissue and developmental specific expression of murine smooth muscle y-actin fusion genes in transgenic mice. Dev Dyn 207:135–144.

    Article  CAS  PubMed  Google Scholar 

  86. Ramirez, F., Pereira, L. (1999). The fibrillins. Int J Biochem Cell Biol 31:255–259.

    Article  CAS  PubMed  Google Scholar 

  87. Ranger, A.M., Grusby, M.J., Hodge, M.R., et al. (1998). The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190.

    Article  CAS  PubMed  Google Scholar 

  88. Rongish, B., Drake, C., Argraves, W., Little, C. (1998). Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev Dyn 212:461–471.

    Article  CAS  PubMed  Google Scholar 

  89. Rosenquist, T., Beall, A. (1990). Elastogenic cells in the developing cardiovascular system: Smooth muscle, nonmuscle and cardiac neural crest. Ann NY Acad Sci 588: 106–119.

    Article  CAS  PubMed  Google Scholar 

  90. Rosenquist, T., McCoy, J., Waldo, K., Kirby, M. (1988). Origin and propagation of elastogenesis in the developing cardiovascular system. Anat Rec 221:860–871.

    Article  CAS  PubMed  Google Scholar 

  91. Sarkisov, D., Kolokolchikova, E., Kaem, R., Paltsyn, A. (1988). Vascular changes in maturing granulation tissue. Bull Exp Biol Med 105:604–605.

    Article  Google Scholar 

  92. Scott, N., Cipolla, G., Ross, C., et al. (1996). Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93:2178–2187.

    Article  CAS  PubMed  Google Scholar 

  93. Selmin, O., Volpin, D., Bressen, G. (1991). Changes of cellular expression of mRNA for tropoelastin in the intraembryonic arterial vessels of developing chick by in situ hybridization. Matrix 11:347–358.

    Article  CAS  PubMed  Google Scholar 

  94. Shi, Y., O’Brien, J., Fard, A., Mannion, J., Zalewski, A. (1996). Adventitial myofibroblasts contribute to neointimal formation in injured porcine arteries. Circulation 94:1655–1664.

    Article  CAS  PubMed  Google Scholar 

  95. Shima, D.T., Mailhos, C. (2000). Vascular developmental biology: getting nervous. Curr Opin Genet Dev 10:536–542.

    Article  CAS  PubMed  Google Scholar 

  96. Shimizu, R., Blank, R., Jervis, R., Lawrenz-Smith, S., Owens, G. (1995). The smooth muscle alpha-actin gene promoter is differentially regulated in smooth muscle versus non-smooth muscle cells. J Biol Chem 270:7631–7643.

    Article  CAS  PubMed  Google Scholar 

  97. Shore, P., Sharrocks, A. (1994). The transcription factors Elk-1 and serum response factor interact by direct protein-protein contacts mediated by a short region of Elk-1. Mol Cell Biol 14:3283–3291.

    CAS  PubMed  Google Scholar 

  98. Shutter, J.R., Scully, S., Fan, W., et al. (2000). D114, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318.

    CAS  PubMed  Google Scholar 

  99. Sims, D. (1991). Recent advances in pericyte biology-implications for health and disease. Can J Cardiol 7:431–443.

    CAS  PubMed  Google Scholar 

  100. Skalak, T., Price, R., Zeller, P. (1998). Where do new arterioles come from? Mechanical forces and microvessel adaptation. Microcirculation 5:91–94.

    CAS  PubMed  Google Scholar 

  101. Solway, J., Forsythe, S., Halayko, A., Vieira, J., Hershenson, M., Camoretti-Mercado, B. (1998). Transcriptional regulation of smooth muscle contractile apparatus expression. Am J Respir Crit Care Med 158:5100–5108.

    Google Scholar 

  102. Solway, J., Seltzer, J., Samaha, F., et al. (1995). Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem 270:13460–13469.

    Article  CAS  PubMed  Google Scholar 

  103. Sotiropoulos, A., Gineitis, D., Copeland, J., Triesman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98: 159–169.

    Article  CAS  PubMed  Google Scholar 

  104. Soulez, M., Rouviere, C., Chafey, P., et al. (1996). Growth and differentiation of C2 myogenic cells are dependent on serum response factor. Mol Cell Biol 16:6065–6074.

    CAS  PubMed  Google Scholar 

  105. Stenmark, K., Mecham, R. (1997). Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59:89–144.

    Article  CAS  PubMed  Google Scholar 

  106. Suri, C., Jones, P., Patan, S., et al. (1996). Requisite role of angiopoietin-1, a ligand for the tie2 receptor, during embryonic angiogenesis. Cell 87:1171–1180.

    Article  CAS  PubMed  Google Scholar 

  107. Suzuki, T., Nagai, R., Yazaki, Y. (1998). Mechanisms of transcriptional regulation of gene expression in smooth muscle cells. Circ Res 82:1238–1242.

    Article  CAS  PubMed  Google Scholar 

  108. Szucsik, J., Lessard, J. (1995). Cloning and sequence analysis of the mouse smooth muscle gamma-enteric actin gene. Genomics 28:154–162.

    Article  CAS  PubMed  Google Scholar 

  109. Topouzis, S., Majesky, M. (1996). Smooth muscle lineage diversity in the chick embryo: two types of aortic SMC differ in growth and receptor-mediated signaling responses to transforming growth factor-beta. Dev Biol 178:430–445.

    Article  CAS  Google Scholar 

  110. Triesman, R. (1994). Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev 4:96–101.

    Article  Google Scholar 

  111. Tuder, R., Groves, B., Badesch, D., Voekel, N. (1994). Exuberant endothelial growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275–285.

    CAS  PubMed  Google Scholar 

  112. Vernon, R., Sage, E. (1995). Between molecules and morphology: extracellular matrix and creation of vascular form. Am J Pathol 147:873–882.

    CAS  PubMed  Google Scholar 

  113. Vikkula, M., Boon, L., Carraway, K., et al. (1996). Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–1190.

    Article  CAS  PubMed  Google Scholar 

  114. Waldo, K., Kirby, M. (1993). Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat Rec 237:385–399.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, H., Chen, Z., Anderson, D. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753.

    Article  CAS  PubMed  Google Scholar 

  116. Watanabe, N., Kurabayashi, M., Shimomura, Y., et al. (1999). BTEB2, a Kruppel-like transcription factor, reguates expression of the SMemb/nonmuscle myosin heavy chain B (SMemb/NMHC-B) gene. Circ Res 85:182–191.

    Article  CAS  PubMed  Google Scholar 

  117. Wong, L.C., Langille, B.L. (1996). Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow. Circ Res 78:799–805.

    Article  CAS  PubMed  Google Scholar 

  118. Yawashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K., Nishikawa, S. (2000) Flk-1-positive cells desired from embryonic stem cells serve as vascular progenitors. Nature 408:92–96.

    Article  CAS  Google Scholar 

  119. Yano, H., Hayashi, K., Momiyama, T., Saga, H., Haruna, M., Sobue, K. (1995). Transcriptional regulation of the chicken caldesmon gene: activation of gizzard-type caldesmon promoter requires a CArG box-like motif. J Biol Chem 270:23661–23666.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, H., Timpl, R., Sasaki, T., Chu, M., Ekblom, P. (1996). Fibulin-1 and fibulin-2 expression during organogenesis in the developing mouse embryo. Dev Dyn 205: 348–364.

    Article  CAS  PubMed  Google Scholar 

  121. Zilberman, A., Dave, V., Miano, J., Olson, E., Periasamy, M. (1998). Evolutionarily conserved promoter region containing CArG*-like elements is crucial for smooth muscle myosin heavy chain gene expression. Circ Res 82:566–575.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Majesky, M.W., Dong, XR., Lu, J. (2002). Development and Differentiation of Vascular Smooth Muscle. In: Tomanek, R.J. (eds) Assembly of the Vasculature and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0109-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0109-0_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6616-7

  • Online ISBN: 978-1-4612-0109-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics