Skip to main content

The Ties That Bind: Emerging Concepts About the Structure and Function of Angiopoietins and Their Receptors in Angiogenesis

  • Chapter
Assembly of the Vasculature and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The Tie [tyrosine kinase with immunoglobulin and epidermal growth factor (EGF) homology domains] receptors, Tie-1 and Tie-2, have been found to be localized primarily to the endothelial and hematopoietic cells in all organisms (human, mouse, rat, zebrafish) that have been examined (Wilks, 1989;Dumont et al., 1992;Iwama, et al., 1993;Maisonpierre et al., 1993;Sato et al., 1993;Lyons et al., 1998). The only other receptors that share this feature are those that bind and are activated by the (VEGF) family members (discussed in the previous chapter). Tie-1 and Tie-2 are large (-160 kDa) multidomain proteins that are highly homologous. The rat genes share 32% sequence identity in their extracellular regions and 79% sequence identity in their intracellular regions (Maisonpierre et al., 1997). The mouse genes are both on chromosome 4, separated by only 12.2 centimorgans (cM), while the human Tie-1 gene is on 1p33–34, which is a syntenic location (Korhonen et al., 1994). Human Tie-2 is on 9p21. The ligands for Tie-2, the angiopoietins, comprise a unique family of proteins, the first member of which was cloned only a few years ago (Davis et al., 1996;Maisonpierre et al., 1997;Valenzuela et al., 1999). All the angiopoietins are highly homologous to each other; angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are —60% identical in their amino acid sequence; angiopoietin-3 and -4 (Ang3 and 4) show —54% identity to Ang1 (Maisonpierre et al., 1997;Valenzuela et al., 1999). They have diverged enough to serve different functions and to reside on different chromosomes.15 (syntenic); for Ang2, the human gene is on 8p21 and the mouse gene on chromosome 8 (syn-tenic), whereas human Ang4 is on 20p13 and mouse Ang3 is on chromosome 2 (which are also syntenic) (Valenzuela et aI., 1999). So far, there are no definitive ligands for Tie-I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benjamin, L.E., Golojanin, D., et al. (1999). Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin, L.E., Hemo, I., et al. (1998). A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598.

    CAS  PubMed  Google Scholar 

  • Davis, S., Aldrich, T.H., et al. (1996). Isolation of angiopoietin-1, a ligand for the Tie2 re-ceptor, by secretion-trap expression cloning [see comments]. Cell 87(7):1161–1169.

    Article  CAS  PubMed  Google Scholar 

  • Detmar, M., Brown, L.F., et al. (1998). Increased microvasculature density and enhancedleukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, D.J., Gradwohl, G., et al. (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, D.J., Yamaguchi, T.P., et al. (1992). tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480.

    CAS  PubMed  Google Scholar 

  • Feng, G.-S., Pawson, T. (1994). Phosphotyrosine phosphatases with SH2 domains: regulators of signal transduction. Trends Genet 10(2):54–58.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (1990). Endothelial cells and angiogenic growth factors in cancer growth and metastasis. Introduction. Cancer Metastasis Rev 3:171–174.

    Article  Google Scholar 

  • Henkemeyer, M., Rossi, D.J., et al. (1995). Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature 377:695–701.

    Article  CAS  PubMed  Google Scholar 

  • Holash, J., Maisonpierre, P.C., et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., Turck, C.W., et al. (1995). GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase Oncogene 11:2097–2103.

    CAS  Google Scholar 

  • Iwama, A.I., Hamaguchi, I., et al. (1993). Molecular cloning and characterisation of mouse Tie and tek receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Commun 195:301–309.

    Article  CAS  PubMed  Google Scholar 

  • Jones, N., Dumont, D.J. (1998). The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17:1097–1108.

    Article  CAS  PubMed  Google Scholar 

  • Koblizek, T.I., Runting, A.S., et al. (1997). Tie2 receptor expression and phosphorylation in cultured cells and mouse tissues. Eur J Biochem 244:774–779.

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, J., Polvi, A., et al. (1994). The mouse Tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9:395–403.

    CAS  PubMed  Google Scholar 

  • Korpelainen, E.I., Karkkainen, M., et al. (1999). Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Lin, P., Buxton, J.A., et al. (1998). Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Nat Acad Sci USA 95:8829–8834.

    Article  CAS  PubMed  Google Scholar 

  • Lin, P., Polverini, P., et al. (1997). Inhibition of tumor angiogenesis using a soluble recep-tor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, M.S., Bell, B., et al. (1998). Isolation of the zebrafish homologues for the Tie-1 and Tie-2 endothelium-specific receptor tyrosine kinases. Dev Dyn 212(1):133–140.

    Article  CAS  PubMed  Google Scholar 

  • Maisonpierre, P.C., Goldfarb, M., et al. (1993). Distinct rat genes with related profiles of expression define a Tie receptor tyrosine kinase family. Oncogene 8:1631–1637.

    CAS  PubMed  Google Scholar 

  • Maisonpierre, P.C., Suri, C., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [see comments]. Science 277(5322):55–60.

    Article  CAS  PubMed  Google Scholar 

  • Neel, B.G. (1993). Structure and function of SH2-domain containing tyrosine phosphatases. Semin Cell Biol 4:419–432.

    Article  CAS  PubMed  Google Scholar 

  • Partanen, J., Puri, M.C., et al. (1996). Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and cell survival during murine development. Development 122:3013–3021.

    CAS  PubMed  Google Scholar 

  • Pawson, T. (1995). Protein modules and signalling networks. Nature 373:573–580.

    Article  CAS  PubMed  Google Scholar 

  • Puri, M.C., Rossant, J., et al. (1995). The receptor tyrosine kinase Tie is required forintegrity and survival of vascular endothelial cells. EMBO J 14(23):5884–5891

    CAS  PubMed  Google Scholar 

  • Robinson, G.S., Aiello, L.P. (1998). Angiogenic factors in diabetic ocular disease: mecha-nisms of today, therapies for tomorrow. Int Ophthalmol Clin 38(2):89–102.

    CAS  PubMed  Google Scholar 

  • Rockow, S., Tang, J., et al. (1996). Nck inhibits NGF and basic FGF induced PC12 celldifferentiation via mitogen-activated protein kinase-independent pathway. Oncogene12(11):2351–2359.

    CAS  PubMed  Google Scholar 

  • Sato, T.N., Qin, Y., et al. (1993). Tie-1 and Tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci USA 90:9355–9358.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T.N., Tozawa, Y., et al. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376(6535):70–74.

    Article  CAS  PubMed  Google Scholar 

  • Stratmann, A., Risau, W., et al. (1998). Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis [see comments]. Am J Pathol 153(5):1459–1466.

    Article  CAS  PubMed  Google Scholar 

  • Suri, C., Jones, P.F., et al. (1996). Requisite role of angiopoietin-1, a ligand for the Tie2receptor, during embryonic angiogenesis [see comments]. Cell 87(7):1171–1180.

    Article  CAS  PubMed  Google Scholar 

  • Suri, C., McClain, J., et al. (1998). Increased vascularization in mice overexpressingangiopoietin-1. Science 282(5388):468–71

    Article  CAS  PubMed  Google Scholar 

  • Thurston, G., Suri, S., et al. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286(5449):2511–14.

    Article  CAS  PubMed  Google Scholar 

  • Trahey, M., Wong, G., et al. (1988). Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242(4886):1697–1700.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela, D.M., Griffiths, J.A., et al. (1999). Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96(5):1904–1909.

    Article  CAS  PubMed  Google Scholar 

  • Vikkula, M., Boon, L.M., et al. (1996). Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase Tie2. Cell 87:1181–1190.

    Article  CAS  PubMed  Google Scholar 

  • Wilks, A.F. (1989). Two putative protein-tyrosine kinases identified by application of the polynerase chain reaction. Proc Nat Acad Sci USA 86:1603–1607.

    Article  CAS  PubMed  Google Scholar 

  • Wong, A.L., Haroon, Z.A., et al. (1997). Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574.

    Article  CAS  PubMed  Google Scholar 

  • Zagzag, D., Hooper, A., et al. (1999). In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis [in process citation]. Exp Neurol 159(2):391–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suri, C., Yancopoulos, G.D. (2002). The Ties That Bind: Emerging Concepts About the Structure and Function of Angiopoietins and Their Receptors in Angiogenesis. In: Tomanek, R.J. (eds) Assembly of the Vasculature and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0109-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0109-0_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6616-7

  • Online ISBN: 978-1-4612-0109-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics