Amplitude Equation Models for the Interaction of Shocks with Nonlinear Dispersive Wave Envelopes

  • P. K. Newton
  • R. M. Axel

Abstract

Mode coupling between hyperbolic and dispersive waves is discussed in a general context. A class of amplitude equations is then introduced and used to study the interaction of a shock wave with a dispersive wave envelope. In particular, we describe and analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation that allows for finite time shock formation. Special attention is focused on the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave. This limit is also an integrable limit in which the model reduces to the nonlinear Schrödinger equation. In this limit, we study the interaction of a ‘fast’ shock wave and a single hump soliton. First we analyze the weakly coupled problem in which the shock evolves independently of the dispersive wave. We show that the shock formation rives a finite time blow-up in the generalized frequency, —θ t , of the dispersive wave. We then analyze the fully coupled problem and develop a multi-scale, near-integrable asymptotic method to derive the effective leading order shock equations and the leading order modulation equations governing the phase and amplitude of the dispersive wave envelope. A sequence of numerical experiments is then performed on the leading order shock equation to depict some of the interesting interactions predicted by the analysis.

Keywords

Entropy Propa Soliton Eter Compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley, 1974.Google Scholar
  2. 2.
    P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, 1972Google Scholar
  3. 3.
    W. Munc, Acoustic monitoring of ocean gyres, J. Fluid Mech 173 (1986), 43-53CrossRefGoogle Scholar
  4. 4.
    R. C. Shockley, J. Northrop, P.G. Hansen, SOFAR propagation paths from Australia to Bermuda: comparison of signal speed algorithms and experiments, J. Acoust. Soc. Am., 71 (1982), 51-60CrossRefGoogle Scholar
  5. 5.
    R. Cook, Penetration of a sonic boom into water, J. Acous. Soc. Am., 47 (1970), 1430CrossRefGoogle Scholar
  6. 6.
    K. Sawyers, Underwater sound pressure from sonic booms, J. Acous. Soc. Am., 44 (1968), 523.CrossRefGoogle Scholar
  7. 7.
    V. Sparrow, The effect of supersonic aircraft speed on the penetration of sonic boom noise into the ocean, J. Acoust. Soc. Am., 97 (1995).Google Scholar
  8. 8.
    J. Waters, R. Glass, Penetration of sonic boom energy into the ocean: an experimental simulation, Hydrospace Research Corporation Technical Report no. 288, June 1970Google Scholar
  9. 9.
    M. Hussey, Diagnostic Ultrasound: An Introduction to the Interactions Between Ultrasound and Biological Tissues, Wiley, 1975Google Scholar
  10. 10.
    L. Hutchins, S. Leeman, Tissue parameter measurement and imaging, in: Acoustical Imaging, Vol. 11, J.P. Powers, Ed., Plenum Press, 1982Google Scholar
  11. 11.
    S. Leeman, Ultrasound pulse propagation in dispersive media, Phys. Med. Biol, 25 (1980), 481CrossRefGoogle Scholar
  12. 12.
    E. J. Smith, Observations of interplanetary shocks: recent progress, Space Sci. Review, 34 (1983), 101Google Scholar
  13. 13.
    C. F. Kennel, F. L. Scarf, F. V. Coroniti, E. J. Smith, D. A. Gurnett, Nonlocal plasma turbulence associated with interplanetary shocks, J. Geo. Res 87 Al (1982), 17CrossRefGoogle Scholar
  14. 14.
    G. S. Bisnovatyi-Kogan, S.A. Silich, Shock-wave propagation in the nonuniform interstellar medium, Rev. Mod. Phys., 67 (1995), 661CrossRefGoogle Scholar
  15. 15.
    V. D. Djordjevic, L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech 79 (1977), 703-714.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    N. Yajima, M. Okawa, Formulation and interaction of sonic-Langmuir solitons, Prog. Theor. Phys., 56 (1976), 1719MATHCrossRefGoogle Scholar
  17. 17.
    V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys., 17 (1977), 153Google Scholar
  18. 18.
    M. V. Goldman, Strong turbulence of plasma waves, Rev. Mod. Phys., 56 (1984), 709CrossRefGoogle Scholar
  19. 19.
    R. M. Axel, P. K. Newton, The interaction of shocks with dispersive waves: I. Weak coupling limit, Studies in Appl. Math., 96 (1996), 201- 246MathSciNetMATHGoogle Scholar
  20. 20.
    R. M. Axel, P. K. Newton, The interaction of shocks with dispersive waves: II. Near integrable, incompressible limit, Studies in Appl. Math 100 (1998), 311-363MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    R. M. Axel, The interaction of shock waves and dispersive waves, Ph.D. dissertation, Dept. of Mathematics, U. of Illinois, Urbana-Champaign, 1996Google Scholar
  22. 22.
    O. Oleinik, Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk., 12, (1957), 3; English trans: Amer. Math. Soc. Transl. Ser. 2, 26 (1962), 95MathSciNetGoogle Scholar
  23. 23.
    J. K. Hale, H. Koçak, Dynamics and Bifurcations, Springer-Verlag, 1991Google Scholar
  24. 24.
    P. D. Lax, Shock waves, increase of entropy and loss of information, in: Seminar on Nonlinear PDE, S.S. Chern, Ed., MSRI Pub. 2, Springer, 1984CrossRefGoogle Scholar
  25. 25.
    M. Slemrod, Interrelationships among mechanics, numerical analysis, compensated compactness, and oscillation theory, in: Oscillation Theory, Computation, and Methods of Compensated Compactness, C. Dafermos, J.L. Eriksen, D. Kinderlehrer, M. Slemrod, Eds., IMA Vol. 2, Springer-Verlag, 1986Google Scholar
  26. 27.
    T. Ozawa, Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Diff. and Int. Equa., 5 (1992), 721MathSciNetMATHGoogle Scholar
  27. 28.
    P. K. Newton, Wave interactions in the singular Zakharov system, J. Math. Phys., 32 (1991), 431MathSciNetMATHCrossRefGoogle Scholar
  28. 29.
    J. Kevorkian, J. Cole, Perturbation Methods in Applied Mathematics, Applied Math. Sci., Vol. 34, Springer, 1980Google Scholar
  29. 30.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, 1982Google Scholar
  30. 31.
    C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978Google Scholar
  31. 32.
    V. I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press, 1975Google Scholar
  32. 33.
    Tai-Ping Liu, Nonlinear resonance for quasi-linear hyperbolic equation, J. Math. Phys., 28 (1987), 2593-2602MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  2002

Authors and Affiliations

  • P. K. Newton
    • 1
  • R. M. Axel
    • 2
  1. 1.Department of Aerospace Engineering, and Center for Applied Mathematical SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations