Skip to main content

Abstract

Under mild conditions the experimentally accessible Hamiltonians in ensembles of N coupled, nondegenerate spins-½ are shown to generate the entire Lie group SU(2 N ). This is the case e.g., in nuclear magnetic resonance (NMR) spectroscopy [1], where quantum computing gates [2] are implemented by unitary propagators, viz the ‘rf-pulse sequences’.

The maximum achievable coherence transfer amplitude under unitary Hamiltonian dynamics of ensembles translates into a minimum Euclidean distance: the minimal distance between the unitary orbit of some given initial state represented by a density operator (or its signal-relevant components collected in a matrix A) and a given final state or observable (or its components C ). This distance relates to the C-numerical range of A, W C(A) := {tr(UAU -1 C)|USU(2N)}, and its largest absolute value, the C-numerical radius of A, \( r_C \left( A \right) : = \mathop {{\rm{max}}}\limits_U |tr\left\{ {U AU^{ - 1} C} \right\}|\left[ {\rm{3}} \right] \) [3]. The geometry of the C-numerical range includes as limiting cases the notions of ensembles comprising entangled as well as classically mixed components. In the latter, entropy and relative entropy relate to Euclidean distances.

Given two arbitrary matrices A,C ∈ Mat n (C), the first gradient-flow-based computer algorithm [4-6] for minimising the Euclidean distance between the unitary orbit of A and C (or rather C) in the general case is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. Ernst, G. Bodenhausen, and A. Wokaun,Principles of NMR in One and Two Dimensions, Clarendon, Oxford, 1987.

    Google Scholar 

  2. M.A. Nielsen and I.L. Chuang,Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  3. M. Goldberg and E.G. Straus, Elementary inclusion relations for generalized numerical ranges,Lin. Alg. Appl. 18(1977), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  4. S.J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, 0. Schedletzky, N.C. Nielsen, O.W. Sørensen, and C. Griesinger, Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy,Science 280 (1998), 421–424.

    Article  Google Scholar 

  5. U. Helmke, K. Hüper, J.B. Moore, and T. Schulte-Herbrüggen, Gradient flows computing the C-numerical range with applications in NMR spectroscopy,J. Global Optim., in press, 2002. [Special issue: “Nonconvex Optimization in Control,” K.L. Teo, D. Li, and W.Y. Yan, eds.].

    Google Scholar 

  6. T. Schulte-Herbrüggen, Aspects and Prospects of High-Resolution NMR, Ph.D. Thesis, ETH Zurich, 1998. Diss. ETH No. 12752.

    Google Scholar 

  7. H. Primas,Chemistry, Quantum Mechanics and Reductionism, Springer, Heidelberg, 1983.

    Book  Google Scholar 

  8. J. von Neumann,Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1955.

    MATH  Google Scholar 

  9. C.-K. Li, C-Numerical ranges and C-numerical radii,Lin. Multilin. Alg. 37 (1994), 51–82.

    MATH  Google Scholar 

  10. W.-S. Cheung and N.-K. Tsing, The C-numerical range of matrices is star-shaped,Lin. Multilin. Alg. 41 (1996), 245–250.

    Article  MathSciNet  MATH  Google Scholar 

  11. C.-K. Li and N.-K. Tsing, Matrices with circular symmetry on their unitary orbits and C-numerical ranges,Proc. Amer. Math. Soc. 111 (1991), 19–28.

    MathSciNet  MATH  Google Scholar 

  12. R.A. Horn and C.A. Johnson,Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  13. J. von Neumann, Some matrix-inequalities and metrization of matrixspace, Tomsk Univ. Rev. 1 (1937), 286–300. [Reproduced in:John von Neumann: Collected Works, Vol. IV (A. H. Taub, ed.), Pergamon Press, Oxford, 1962, pp. 205–219.]

    Google Scholar 

  14. N. Khaneja and S.J. Glaser, Cartan decomposition of SU(2N), constructive controllability of spin systems and universal quantum computing,Chem. Phys. 267 (2001), 11–23. (e-print: quant-ph/0010100).

    Article  Google Scholar 

  15. J. Aczl and Z. Daróczy,On Measures of Information and Their Characterizations, Academic Press, New York, 1975.

    Google Scholar 

  16. R.W. Brockett, Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems.In Proc. IEEE of the 27th Conference on Decision and Control, pp. 799–803, Austin, TX, 1988. See alsoLin. Alg. Appl.146 (1991), 79–91.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.W. Brockett, Differential geometry and the design of gradient algorithms,Proc. Symp. Pure Math.54 (1993), 69–91.

    MathSciNet  Google Scholar 

  18. U. Helmke and J.B. Moore,Optimization and Dynamical Systems, Springer, London, 1994.

    Google Scholar 

  19. O.W. Sørensen, Polarization transfer experiments in high-resolution NMR spectroscopy,Prog. NMR Spectrosc.21 (1989), 503–569.

    Article  Google Scholar 

  20. O.W. Sørensen, The entropy bound as a limiting case of the universal bound on spin dynamics. Polarization transfer in In S m spin systems,J. Mag. Reson 93 (1991), 648–652.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schulte-Herbrüggen, T., Hüper, K., Helmke, U., Glaser, S.J. (2002). Geometry of Quantum Computing by Hamiltonian Dynamics of Spin Ensembles. In: Dorst, L., Doran, C., Lasenby, J. (eds) Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0089-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0089-5_24

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6606-8

  • Online ISBN: 978-1-4612-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics