Evaluation of Integrals Representing Correlations in the XXX Heisenberg Spin Chain

  • H. E. Boos
  • V. E. Korepin
Part of the Progress in Mathematical Physics book series (PMP, volume 23)


We study the XXX Heisenberg spin 1/2 anti-ferromagnet. We evaluate a probability of formation of a ferromagnetic string in the anti-ferromagnetic ground state in the thermodynamical limit. We prove that for short strings the probability can be expressed in terms of the Riemann zeta function with odd arguments.


Correlation Function Zeta Function Spin Chain Riemann Zeta Function Short String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. KreimerKnots and Feynman DiagramsCambridge University Press, 2000.Google Scholar
  2. [2]
    H.E. Boos, V.E. Korepin, Quantum Spin Chains and Riemann Zeta Function with Odd Arguments, hep-th/0104008.Google Scholar
  3. [3]
    W. Heisenberg. Zur theorie der ferromagnetisms. Zeitschrift fur Physik, 49(9–10), 619, (1928).CrossRefMATHGoogle Scholar
  4. [4]
    H. Bethe, Zur theorie der metalle I. Eigenwerte und eigenfunktionen der linearen atomketteZeitschrift für Physik76, 205 (1931).CrossRefGoogle Scholar
  5. [5]
    L. Hulthén, Über das Austauschproblem eines KristalsArk. Mat.Astron. Fysik, A 26, 1 (1939).Google Scholar
  6. [6]
    M. TakahashiThermodynamics of One-dimensional Solvable ModelsCambridge University Press, 1999.Google Scholar
  7. [7]
    V.E. Korepin, A.G. Izergin and N.M. BogoliubovQuantum Inverse Scattering Method and Correlation FunctionsCambridge Univ. Press, Cambridge, 1993.CrossRefGoogle Scholar
  8. [8]
    M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, Correlation functions of the XXZ model for A < —1Phys. Lett., A166, 256, (1992); hep-th/9205055.MathSciNetCrossRefGoogle Scholar
  9. [9]
    V.E. Korepin, A.G. Izergin, F. Essler, D.B. Uglov, Correlation functions of the spin -1/2 XXX AntiterromagnetPhys. Lett., A190, 182–184, (1994).MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. Takahashi, Thermodynamic Bethe ansatz and condensed matterJ. Phys., C10, 1289, (1977); cond-mat/9708087.CrossRefGoogle Scholar
  11. [11]
    J. Dittrich and V.I. Inozemtsev, On the second-neighbor correlator in 1D XXX quantum anti-ferromagnetic spin chain, cond-mat/9706263.Google Scholar
  12. [12]
    F. Berruto, G. Grignani, G.W. Semenoff and P. Sodano, On the correspondence between the strongly coupled 2-flavor lattice Schwinger model and the Heisenberg antiferromagnetic chain, hep-th/9901142, preprint DFUPG-190–98, UBC/GS-6–98.Google Scholar
  13. [13]
    J. de Gier and V.E. Korepin, Six-vertex model with domain wall boundary conditions, variable inhomogeneities, math-ph/0101036.Google Scholar
  14. [14]
    A.V. Razumov and Yu.G. Stroganov, Spin chain and combinatorics, condmat/0012141; Spin chains and combinatorics: twisted boundary conditions, condmat/0102247.Google Scholar
  15. [15]
    E.C. TitchmarchThe Theory of the Riemann Zeta-FunctionClarendon Press, 1987.Google Scholar
  16. [16]
    B. RiemannÜber die Anzahl der Primzahlen unter einer gegebenen GrösseMonat. der Koenigl. Preuss. Akad. der Wissen. zu Berlin aus dem Jahre 1859 (1860), 671–680; also Gesammelte mat. Werke und wissensch. Nachlass, 2 Aufl. 1892, 145–155.Google Scholar
  17. [17]
    T. Rivoal, La fonction zeta de Riemann prend une infinite de valeurs irrationneles aux entiers impairsC. R. Acad. Sci. Paris Sér. 1 Math.331 (2000), no. 4, 267270 and Irrationalite d’au moins un des neuf nombres b(5) b(7) b(21)
  18. [18]
    D. ZagierValues of Zeta Functions and theirApplications, First European Congress of Mathematics, Vol. II (Paris, 1992) Prog. Math., Birkhäuser, Basel-Boston, page 497, 1994.Google Scholar
  19. [19]
    J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. LisonekSpecial values of multiple polylogarithmsmath.CA/9910045.Google Scholar
  20. [20]
    A. Knauf, Number theory, dynamical systems and statistical mechanics Reviews in Mathematical Physics 11 1027–1060 (1999).MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N. Kitanine, J.M. Maillet and V. Terras, Correlation functions of the XXZ Heisenberg spin 1/2 chain in a magnetic field, math-ph/9907019.Google Scholar
  22. [22]
    P.J. Forrester and A.M. Odlyzko, Gaussian unitary ensemble eigenvalues and Riemannbfunction zeros,Phys. Rev. E54, p. 4493, 1996.MathSciNetCrossRefGoogle Scholar
  23. [23]
    C. A. Tracy and H. Widom, Fredholm determinants, differential equations and matrix modelsCommun. Math. Phys.163, 33–72 (1994).MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Differential equations for quantum correlation functionsInt. Jour. Mod. Phys. B4 p. 1003, 1990.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A. M. Odlyzko, The 1020zero of the Riemann zeta function and 70 million of its neighbors, AT&T Bell Lab preprint (1989).Google Scholar
  26. [26]
    H. L. Montgomery, Analytic number theoryProc. Symp. Pure Math. 24181–193 (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • H. E. Boos
    • 1
  • V. E. Korepin
    • 2
  1. 1.Institute for High Energy PhysicsProtvinoRussia
  2. 2.Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookNYUSA

Personalised recommendations