Skip to main content

Conformal Field Theories, Graphs and Quantum Algebras

  • Chapter
Book cover MathPhys Odyssey 2001

Part of the book series: Progress in Mathematical Physics ((PMP,volume 23))

Abstract

This article reviews some recent progress in our understanding of the structure of rational conformal field theories, based on ideas that originate for a large part in the work of A. Ocneanu. The consistency conditions that generalize modular invariance for a given RCFT in the presence of various types of boundary conditions—open, twisted—are encoded in a system of integer multiplicities that form matrix representations of fusion-like algebras. These multiplicities are also the combinatorial data that enable one to construct an abstract “quantum” algebra, whose 6j-and 3j-symbols contain essential information on the operator product algebra of the RCFT and are part of a cell system, subject to pentagonal identities. It looks quite plausible that the classification of a wide class of RCFT amounts to a classification of “Weak C*- Hopf algebras”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B 444: 163–166, 1998, hep-th/9809097.

    Article  MathSciNet  Google Scholar 

  2. R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal theories, Nucl. Phys., B 579: 707–773, 2000, hep-th/9908036.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Böckenhauer and D.E. Evans,Modular invariants, graphs and oz-induction for nets of subfactors, II: Comm. Math. Phys. 200: 57–103, 1999, hep-th/ 98 0502 3; III: Comm. Math. Phys. 205: 183–228, 1999, hep-th/9812110; Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors, math. OA/9911239.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Böckenhauer, D. E. Evans and Y. Kawahigashi, On a-induction, chiral generators and modular invariants for subfactors Comm. Math. Phys. 208: 429–487, 1999, math.OA/9904109; Chiral structure of modular invariants for subfactors, Comm. Math. Phys. 210: 733–784, 2000, math. OA/ 9 9 0 714 9.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Böhm and K. Szlachányi, A coassociative C*-quantum group with non-integral dimensions, Lett. Math. Phys. 200: 437–456 1996, q-a l g/ 9 5 0 9 0 0 8; Weak C*-Hopf algebras: The coassociative symmetry of non-integral dimensions, in: Quantum Groups and Quantum Spaces, Banach Center Publ. v. 40, (1997) 9–19; G. Böhm, Weak C* -Hopf Algebras and their application to spin models, Ph.D. Thesis, Budapest 1997.

    Google Scholar 

  6. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270: 186–204, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.L. Cardy, Fusion rules and the Verlinde Formula, Nucl. Phys. B 324: 581–596, 1989.

    Article  MathSciNet  Google Scholar 

  8. J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259: 274–278, 1991; D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372: 654–682, 1992.

    Article  Google Scholar 

  9. C.H.O. Chui, Ch. Mercat, W. Orrick and P.A. Pearce, Integrable lattice realizations of conformal twisted boundary conditions, hep-th/0106182.

    Google Scholar 

  10. C.H.O. Chui, Ch. Mercat, W. Orrick and P.A. Pearce, private communication and to appear.

    Google Scholar 

  11. R. Coquereaux, Notes on the quantum tetrahedron, math-ph/0011006; R. Coquereaux and G. Schieber, Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries, hep-th/0107001.

    Google Scholar 

  12. P. Di Francesco and J.-B. Zuber, SU (N) lattice integrable models associated with graphs, Nucl. Phys. B 338: 602–646, 1990.

    Article  MathSciNet  Google Scholar 

  13. P. Di Francesco and J.-B. Zuber, SU(N) lattice integrable models and modular invariance, in Recent Developments in Conformal Field Theories, Trieste Conference, (1989), S. Randjbar-Daemi, E. Sezgin and J.-B. Zuber eds., World Scientific (1990); P. Di Francesco, Integrable lattice models, graphs and modular invariant conformal field theories, Int. J. Math. Phys. A 7: 407–500, 1992.

    MATH  Google Scholar 

  14. R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The Operator algebra of orbifold models, Comm. Math. Phys. 123: 485–526, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys.Rev.Lett. 84: 1659–1662, 2000, hep-th/9909140.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Fuchs, L.R. Huiszoon, A.N. Schellekens, C. Schweigert and J. Walcher, Boundaries, crosscaps and simple currents, Phys. Lett. B 495: 427–434, 2000, hep-th/0007174.

    MathSciNet  MATH  Google Scholar 

  17. J. Fuchs and C. Schweigert, A classifying algebra for boundary conditions, Phys. Lett. B 414: 251–259, 1997, hep-th/9708141.

    MathSciNet  Google Scholar 

  18. J. Fuchs and C. Schweigert, Category theory for conformal boundary conditions, math.CT/0106050.

    Google Scholar 

  19. T. Gannon, The Classification of affine SU(3) modular Invariants, Comm. Math. Phys. 161: 233–263, 1994; The Classification of SU(3) modular invariants revisited, hep-th/ 9404185; The level two and three modular invariants of SU(n), Lett. Math. Phys. 39: 289–298, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Gannon, Boundary conformal field theory and fusion ring representations, hep-th/0106105.

    Google Scholar 

  21. V.G. Kac and D.H. Peterson, Infinite-Dimensional Lie Algebras, Theta Functions and Modular Forms, Adv. Math. 53: 125–264, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Kirillov, Jr and V. Ostrik, On q-analog of McKay correspondence and ADE classification of:s72 conformal field theories, math. QA/ 0101219.

    Google Scholar 

  23. I. Kostov, Free field presentation of the A,z coset models on the torus, Nucl. Phys. B 300: 559–587, 1988.

    MathSciNet  Google Scholar 

  24. A. Ocneanu, Quantum cohomology, quantum groupoids and subfactors, unpublished lectures given at the First Carribean School of Mathematics and Theoretical Physics, Saint François, Guadeloupe 1993.

    Google Scholar 

  25. A. Ocneanu, Paths on Coxeter diagrams: From Platonic solids and singularities to minimal models and subfactors, Lectures on Operator Theory, Fields Institute, Waterloo, Ontario, April 26–30, 1995, (Notes taken by S. Goto), Fields Institute Monographs, AMS 1999, Rajarama Bhat et al, eds.

    Google Scholar 

  26. A. Ocneanu, Quantum symmetries for SU(3) CFT Models, Lectures at Bariloche Summer School, Argentina, Jan 2000, to appear in AMS Contemporary Mathematics„ R. Coquereaux, A. Garcia and R. Trinchero, eds.

    Google Scholar 

  27. V. Pasquier, Two-dimensional critical systems labelled by Dynkin diagramsNucl. Phys. B 285: 162–172, 1987.

    Article  MathSciNet  Google Scholar 

  28. V. Pasquier, Operator content of the ADE lattice modelsJ. Phys. A 20: 57075717, 1987.

    Google Scholar 

  29. V.B. Petkova and J.-B Zuber, On structure constants of sl(2) theories, Nucl. Phys. B 438: 347–372, 1995, hep-th/9410209.

    Article  MathSciNet  MATH  Google Scholar 

  30. V.B. Petkova and J.-B Zuber, From CFT to graphs, Nucl. Phys. B 463: 161–193, 1996, hep-th/9510175; Conformal field theory and graphs, GROUP21 Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras v. 2, (1997), p. 627, Goslar Conference (1996), eds. H.-D. Doebner et al, World Scientific, Singapore, hep-th/ 9701103.

    Article  MathSciNet  MATH  Google Scholar 

  31. V.B. Petkova and J.-B Zuber, Generalized twisted partition functions, Phys. Lett. B 504: 157–164, 2000, hep-th/0011021.

    MathSciNet  Google Scholar 

  32. V.B. Petkova and J.-B Zuber, The many faces of Ocneanu Cells, Nucl. Phys. B 603: 449–496, 2001, hep-th/ 0101151.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Pradisi, A. Sagnotti and Ya.S. Stanev, Completeness conditions for boundary operators in 2D conformal field theory, Nucl. Phys. B 381: 97–104, 1996, hep-th/9603097.

    MathSciNet  MATH  Google Scholar 

  34. A. Recknagel, V. Schomerus, Boundary Deformation Theory and Moduli Spaces of D-Branes, Nucl.Phys. B 545: 233–282, 1999, hep-th/9811237.

    Google Scholar 

  35. I. Runkel, Boundary structure constants for the A-series Virasoro minimal models, Nucl. Phys. B 549: 563–578, 1999, hep-th/9811178;

    Article  MathSciNet  MATH  Google Scholar 

  36. I. Runkel, Structure constants for the D-series Virasoro minimal models, Nucl. Phys. B 579: 561–589, 2000, hep-th/9908046.

    Google Scholar 

  37. R. Talbot, Pasquier models at c = 1: Cylinder partition functions and the role of the affine Coxeter element, J. Phys. A 33: 9101–9118, 2000, hep-th/9911058.

    Google Scholar 

  38. E. Verlinde, Fusion rules and modular transformations in 2-D conformal field theory, Nucl. Phys. B 300: 360–376, 1988.

    MathSciNet  MATH  Google Scholar 

  39. F. Xu, New braided endomorphisme from conformal inclusions. Comm. Math. Phys. 192: 349–403, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petkova, V., Zuber, JB. (2002). Conformal Field Theories, Graphs and Quantum Algebras. In: Kashiwara, M., Miwa, T. (eds) MathPhys Odyssey 2001. Progress in Mathematical Physics, vol 23. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0087-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0087-1_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6605-1

  • Online ISBN: 978-1-4612-0087-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics