Integrable Boundaries and Universal TBA Functional Equations

  • C. H. Otto Chui
  • Christian Mercat
  • Paul A. Pearce
Part of the Progress in Mathematical Physics book series (PMP, volume 23)


We derive the fusion hierarchy of functional equations for critical A-D-E lattice models related to the sℓ (2) unitary minimal models, the parafermionic models and the supersymmetric models of conformal field theory and deduce the related TBA functional equations. The derivation uses fusion projectors and applies in the presence of all known integrable boundary conditions on the torus and cylinder. The resulting TBA functional equations are universal in the sense that they depend only on the Coxeter number of the A-D-E graph and are independent of the particular integrable boundary conditions. We conjecture generally that TBA functional equations are universal for all integrable lattice models associated with rational CFTs and their integrable perturbations.


Integrable Boundary Conformal Field Theory Integrable Boundary Condition Nuclear Phys Boltzmann Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barry M. McCoy and T.T. Wu, The Two Dimensional Ising Model. Harvard University Press, 1973.Google Scholar
  2. [2]
    R. Kedem, T. R. Klassen, B.M. McCoy, and E. Melzer. Fermionic quasi-particle representations for characters of (G (1) )1 x (G (1) )1/(G (1) )2. Phys. Lett. B, 304 (3–4):263–270, 1993. Fermionic sum representations for conformal field theory characters. Phys. Lett. B, 307(1–2):68–76, 1993.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Berkovich and B. M. McCoy. The universal chiral partition function for exclusion statistics. In Statistical physics on the eve of the 21st century, 240–256. World Sci. PublishingGoogle Scholar
  4. [4]
    R. J. Baxter. Partition function of the eight-vertex lattice model. Ann. Physics, 70:193–228, 1972.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press Inc. 1989. Reprint of the 1982 original.Google Scholar
  6. [6]
    R. J. Baxter and P. A. Pearce. Hard hexagons: interfacial tension and correlation length. J. Phys. A, 15(3):897–910, 1982.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Paul A. Pearce. Transfer-matrix inversion identities for exactly solvable lattice-spin models. Phys. Rev. Lett., 58(15):1502–1504, 1987.MathSciNetCrossRefGoogle Scholar
  8. [8]
    V. V. Bazhanov and N. Yu. Reshetikhin. Critical RSOS models and conformal field theory. Internat. J. Modern Phys. A, 4(1):115–142, 1989.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    P. A. Pearce. Row transfer matrix functional equations for A-D-E lattice models. In Infinite analysis, Part A, B (Kyoto, 1991), 791–804. World Sci. Publishing, 1992.Google Scholar
  10. [10]
    A. Kuniba, T. Nakanishi, and J. Suzuki. Internat. J. Modern Phys. A, 9(30):52155266, 1994. Internat. J. Modern Phys. A, 9(30):5267–5312, 1994. A. Kuniba and J. Suzuki, J. Phys. A, 28(3):711–722, 1995.CrossRefMATHGoogle Scholar
  11. [11]
    A. Klümper and R. A. Pearce. Conformal weights of RSOS lattice models and their fusion hierarchies. Physica A, 183(3):304–350, 1992.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Al. B. Zamolodchikov. Nuclear Phys. B, 342(3):695–720, 1990. Nuclear Phys. B, 358(3):497–523, 1991. Nuclear Phys. B, 366(1):122–132, 1991. Nuclear Phys. B, 358(3):524–546, 1991.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P. A. Pearce and B. Nienhuis. Scaling limit of RSOS lattice models and TBA equations. Nuclear Phys. B, 519(3):579–596, 1998.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. N. Kirillov. Dilogarithm identities and spectra in conformal field theory. In Low-dimensional topology and quantum field theory (Cambridge, 1992), 99–108. Algebra i Analiz, 6(2):152–175, 1994.MathSciNetMATHGoogle Scholar
  15. [15]
    E. K. Sklyanin. Boundary conditions for integrable quantum systems. J. Phys. A, 21(10):2375–2389, 1988.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    R. E. Behrend, P. A. Pearce, and D. L. O’Brien. IRF models with fixed boundary conditions: the ABF fusion hierarchy. J. Statist. Phys., 84(1–2):1–48, 1996.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    D. L. O’Brien and P. A. Pearce. Surface free energies, interfacial tensions and correlation lengths of the ABF models. J. Phys. A, 30(7):2353–2366, 1997.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    D. L. O’Brien, P. A. Pearce, and S. O. Warnaar. Analytic calculation of conformal partition functions: tricritical hard squares with fixed boundaries. Nuclear Phys. B, 501(3):773–799, 1997.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    R. E. Behrend and P. A. Pearce. Integrable and conformal boundary conditions for sl(2) A-D-E lattice models and unitary minimal conformal field theories. In Proceedings of the Baxter Revolution in Math. Phys. (Canberra, 2000), volume 102, 577–640, 2001.MathSciNetMATHGoogle Scholar
  20. [20]
    C. Mercat and P. A. Pearce. Integrable and Conformal Boundary Conditions for Zk Parafermions on a Cylinder. J. Phys. A, 34:5751–5771, 2001.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C. Richard and P. A. Pearce. Integrable lattice realizations of N = 1 superconformal boundary conditions. hep-th/0109083, 2001.Google Scholar
  22. [22]
    R. E. Behrend, P. A. Pearce, V. B. Petkova, and J.-B. Zuber. Boundary conditions in rational conformal field theories. Nuclear Phys. B, 579(3):707–773, 2000.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    C. H. Otto Chui, C. Mercat, W. P. Orrick, and P. A. Pearce. Lattice realizations of conformal twisted boundary conditions. Phys. Lett. B 517, 429–435, 2001, hep-th/1–6182.MathSciNetCrossRefGoogle Scholar
  24. [24]
    V. B. Petkova and J.-B. Zuber. Generalised twisted partition functions. Phys. Lett. B, 504(1–2):157–164, 2001.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A. Klümper. Thermodynamics of the anisotropic spin-1/2 Heisenberg chain and related quantum chains. Z. Phys. B, 91:507, 1993.CrossRefGoogle Scholar
  26. [26]
    G. Feverati, R. A. Pearce, and F. Ravanini. Lattice Approach to Excited TBA Boundary Flows. hep-th/0202041, 2001.Google Scholar
  27. [27]
    P. A. Pearce, L. Chim, and C. Ahn. Excited TBA equations. I. Massive tricritical Ising model. Nuclear Phys. B,601(3):539–568, 2001.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.-Y. Choi, D. Kim, and P.A. Pearce. Boundary conditions and inversion identities for solvable lattice models with a sublattice symmetry. J. Phys. A, 22(10):1661–1671, 1989.MathSciNetGoogle Scholar
  29. [29]
    C. H. Otto Chui, C. Mercat, W. R. Orrick, and P. A. Pearce. Integrable lattice realizations of conformal twisted boundary conditions hep-th/0106182, Phys. Lett. B, 517:429–435, 2001.MathSciNetCrossRefGoogle Scholar
  30. [30]
    V.B. Petkova and J.-B. Zuber. The many faces of ocneanu cells. Nuclear Phys. B, 603:449–496, 2001.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    R. E. Behrend and R. A. Pearce. A construction of solutions to reflection equations for interaction-round-a-face models. J. Phys. A, 29(24):7827–7835, 1996.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    P. A. Pearce and Y. K. Zhou. Intertwiners and A-D-E lattice models. Internat. J. Modern Phys. B, 7(20–21):3649–3705, 1993. Yang-Baxter equations in Paris (1992).MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    Y. Kui Zhou and R. A. Pearce. Fusion of A-D-E lattice models. Internat. J. Modern Phys. B, 8(25–26):3531–3577, 1994. Perspectives on solvable models.CrossRefGoogle Scholar
  34. [34]
    R. E. Behrend and R. A. Pearce. Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models. Internat. J. Modern Phys. B, 11(23):2833–2847, 1997.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • C. H. Otto Chui
    • 1
  • Christian Mercat
    • 1
  • Paul A. Pearce
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations