Skip to main content

Periodic Solutions of Nonlinear Problems with Positive Oriented Periodic Coefficients

  • Chapter
Variational and Topological Methods in the Study of Nonlinear Phenomena

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 49))

  • 306 Accesses

Abstract

We study nonlinear ODE problems in the complex Euclidean space, with the right hand side being a complex analytic function of the space variable z with nonconstant periodic coefficients in the time variable t. As the coefficients functions we admit only functions with vanishing Fourier coefficients for negative indices. This leads to an existence theorem which relates the number of solutions with the number of zeros of the averaged right hand side function, and finally gives a theorem of the existence of periodic solution which originates from infinity. The work generalizes and extends previous results of the author, joint with A. Borisovich, for the polynomial case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Ambrosetti and V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, 10, Birkhäuser, Boston, 1993.

    Book  MATH  Google Scholar 

  2. A. Borisovich and W. Marzantowicz, Multiplicity of periodic solutions for the planar polynomial equation, Nonlinear Anal. 43 (2001), 217–231.

    Article  MathSciNet  MATH  Google Scholar 

  3. Th. Bröcker and L. Lander, Differentiable gerías and catastrophes, London Mathematical Society Lecture Note Series, 17, Cambridge University Press, Cambridge, New York, Melbourne, 1975.

    Google Scholar 

  4. J. Campos, Möbius transformation and periodic solutions of complex Riccati equations, Bull. London Math. Soc. 9 (1997), 205–213.

    Article  MathSciNet  Google Scholar 

  5. J. Campos and R. Ortega, Nonexistence of periodic solutions of a complex Riccati equation, Differential Integral Equations 9 (1996), 247–249.

    MathSciNet  MATH  Google Scholar 

  6. A. Capietto, J. Mawhin, and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc. 329 (1992), 41–71.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. B. Conway, Functions of One Complex Variable. II, Graduate Texts in Mathematics, 159, Springer-Verlag, New York, 1995.

    Google Scholar 

  8. P. L. DurenTheory of Hp spaces, Pure and Applied Mathematics, 38, Academic Press, New York, London, 1970.

    Google Scholar 

  9. J. B. GarnettBounded Analytic Functions, Pure and Applied Mathematics, 96, Academic Press, New York, London, 1981.

    MATH  Google Scholar 

  10. N. Lloyd, The number of periodic solutions of the equations z = zN +pi(t)zN-1+… +pN(t), Proc. London Math. Soc. 27 (1973), 667–700.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Manásevich, J. Mawhin, and F. Zanolin, Periodic solutions of complex-valued differential equations and systems with periodic coefficients, J. Differential Equations 126 (1996), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Mawhin, Periodic solutions of some planar nonautonomous polynomial differential equations, Differential Integral Equations 7 (1994), 1055–1061.

    MathSciNet  MATH  Google Scholar 

  13. J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations, in Topological Methods in Differential Equations and Inclusions (Montreal, 1994), 291–375, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 472, Kluwer Acad. Publ., Dordrecht, 1995.

    Google Scholar 

  14. J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer Verlag, New York, Berlin, 1989.

    Google Scholar 

  15. D. Miklaszewski, An equation z = z2 + p(t) with no 27r-periodic solutions, Bull. Belg. Math. Soc. 3 (1996), 239–242.

    MathSciNet  MATH  Google Scholar 

  16. L. Nirenberg, Topics in Nonlinear Functional Analysis, Lecture Notes, 1973–1974, Courant Institute of Mathematical Sciences, New York University, New York, 1974.

    MATH  Google Scholar 

  17. L. Nirenberg, Functional Analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1972.

    Google Scholar 

  18. R. Srzednicki, On periodic solutions of planar polynomial differential equations with periodic coefficients, J. Differential Equations 114 (1994), 77–100.

    Article  MathSciNet  MATH  Google Scholar 

  19. H.Zoládek,The method of holomorphic foliations in planar periodic systems: the case of Riccati equations, J. Differential Equations 165 (2000), 143–173.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marzantowicz, W. (2002). Periodic Solutions of Nonlinear Problems with Positive Oriented Periodic Coefficients. In: Benci, V., Cerami, G., Degiovanni, M., Fortunato, D., Giannoni, F., Micheletti, A.M. (eds) Variational and Topological Methods in the Study of Nonlinear Phenomena. Progress in Nonlinear Differential Equations and Their Applications, vol 49. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0081-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0081-9_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6604-4

  • Online ISBN: 978-1-4612-0081-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics