Modeling of Soil Behaviour: from Micro-Mechanical Analysis to Macroscopic Description

  • Roberto Nova
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The macroscopic behaviour of soil is influenced by its mi­croscopic characteristics. Elementary considerations on friction and grain interlocking lead first to the formulation of an elastic plastic model with isotropic hardening or softening. Micromechanical considerations suggest also that the flow rule should be non-associative. As a consequence, unsta­ble specimen responses, such as static liquefaction and shear banding are possible, even in the hardening regime. In order to model the behaviour in complex tests, an extended model taking induced anisotropy into account is formulated next. Further, we shall show how the time needed for rearrang­ing the internal structure under loading influences the overall response of a specimen. The introduction of a time and a length scale in the macroscopic constitutive model will also help in regularising the numerical response in initial boundary value problems. Finally some features related to the de­scription of soil behaviour at small strains and in unloading-reloading will be briefly discussed.


Shear Band Volumetric Strain Triaxial Compression Stress Path Yield Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Butterfield: A natural compression law for soilsGéotechnique29, pp. 469–480, 1979.CrossRefGoogle Scholar
  2. [2]
    F. Calvetti:Micromeccanica deiMateriali Granulan, Ph.D. thesis, Dipartimento di Ingegneria Strutturale, Politecnico di Milano, 1998.Google Scholar
  3. [3]
    F. Calvetti: Micromechanical investigation of the visco-plastic be­haviour of granular materials, in: G.N. Pande, S. Pietruszczak, N.F. Schweiger (eds.):Numerical Models in Geomechanics - Proc. NUMOG VII 1999 Graz AustriaBalkema, Rotterdam, 1999, pp. 59–64.Google Scholar
  4. [4]
    F. Calvetti, G. Combe, J. Lanier: Experimental micromechanical analysis of a 2D granular material: relation between structure evolu­tion and loading pathMech. Coh.-Fact. Mat.2, pp. 121–164, 1998.Google Scholar
  5. [5]
    B. Cambou, J. Lanier: Induced anisotropy in cohesionless soils: ex­periments and modellingComputers Geotech.6, pp. 299–311, 1988.Google Scholar
  6. [6]
    G. Castro: Liquefaction of sand, Ph.D. thesisHarvard Soil Mechan­ics Series81, Harvard University, Cambridge, MA, 1969.Google Scholar
  7. [7]
    G. Castro: Liquefaction and cyclic mobility of saturated sandJ. Geotech. Eng. Div. ASCE101, pp. 551–569, 1975.Google Scholar
  8. [8]
    J. Desrues, R. Chambon, M. Mokni, F. Mazerolle: Void ratio evolution inside shear bands in triaxial sand specimens studied by computer tomographyGéotechnique46, pp. 529–546, 1996.CrossRefGoogle Scholar
  9. [9]
    Y.F. Dafalias, L.R. Herrmann: Bounding surface formulation of soil plasticity, in: G.N. Pande, O.C. Zienkiewicz (eds.):Soil Me­chanics - Transient and Cyclic LoadsWiley, New York, 1982, pp. 253–282.Google Scholar
  10. [10]
    F. Darve: Liquefaction phenomenon: modelling, stability and unique­ness, in: ARULANANDAN, SCOTT (eds.):Verification of Numerical Pro­cedures for the Analysis of Soil Liquefaction ProblemsBalkema, Rot­terdam, 1994, pp. 1305–1319.Google Scholar
  11. [11]
    C. Di Prisco:Studio Sperimentale e Modellazione Matematica del Comportamento Sperimentale delle SabbiePh.D. thesis, Politecnico di Milano, 1993.Google Scholar
  12. [12]
    C. Di Prisco, S. Imposimato: Time dependent mechanical behaviour of loose sandsMech. Coh.-Frict. Mat.1, pp. 45–73, 1996.CrossRefGoogle Scholar
  13. [13]
    C. Di Prisco, S. Imposimato: Non-local numerical analyses of strain localisation in dense sand, in: G. Capriz, V.N. Ghionna, P. Giovine, N. Moraci (eds.): Mathematical Models in Soil MechanicsMathematical and Computer ModellingElsevier Science Publishers, Amsterdam, 2002, in press.Google Scholar
  14. [14]
    C. Di Prisco, S. Imposimato, E.C. Aifantis: A visco-plastic con­stitutive model for granular soils modified according to non-local and gradient approachesInt. J. Num. Anal. Meth. Geomech.26, pp. 121­138, 2002.Google Scholar
  15. [15]
    C. Di Prisco, R. Matiotti, R. Nova: Theoretical investigation of the undrained stability of shallow submerged slopesGéotechnique45, pp. 479–496, 1995.CrossRefGoogle Scholar
  16. [16]
    C. Di Prisco, R. Nova, J. Lanier: A mixed isotropic-kinematic hardening constitutive law for sand, in: D. Kolymbas (ed.):Mod­ern Approaches to PlasticityElsevier Science Publishers, Amsterdam, 1993, pp. 83–124.Google Scholar
  17. [17]
    M.A. EL SOHBY:The Behaviour of Particulate Materials under StressPh.D. thesis, University of Manchester, 1964.Google Scholar
  18. [18]
    M. Goldscheider: True triaxial tests on dense sand, in: F. Darve, G. Gudehus, I. Vardoulakis (eds.):Constitutive Relations for SoilsBalkema, Rotterdam, 1984, pp. 11–54.Google Scholar
  19. [19]
    T. Hueckel, R. Nova: Some hysteresis effects of the behaviour of geological mediaInt. J. Solids Struct.15, pp. 625–642, 1979.MATHCrossRefGoogle Scholar
  20. [20]
    S. Imposimato, R. Nova: An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sandMech. Coh.-Frict. Mat.3, pp. 65–873, 1998.CrossRefGoogle Scholar
  21. [21]
    S. Imposimato, R. Nova: Instabilities of loose sand specimens in undrained tests, in: T. Adachi, F. Oka, A. Yashima (eds.):Local­isation and Bifurcation Theory for Soils and RocksBalkema, Rotter­dam, 1998, pp. 313–322.Google Scholar
  22. [22]
    K. Ishihara, F. Tatsuoka, S. Yasuda: Undrained deformation and liquefaction of sand under cyclic stressesSoils and Foundations15, pp. 29–44, 1975.CrossRefGoogle Scholar
  23. [23]
    K. Iwan: On a class of models for the yielding behaviour of continuous and composite systemsJ. App. Mech. Ser.E3, pp. 612–617, 1967.CrossRefGoogle Scholar
  24. [24]
    R.J. Jardine: Some observations of the kinematic nature of soil stiff­nessSoils and Foundations32, pp. 111–124, 1992.CrossRefGoogle Scholar
  25. [25]
    S.L. Kramer, H.B. Seed: Initiation of soil liquefaction under static loading conditionsJ. Geo. Engng. ASCE114, pp. 412–430, 1988.CrossRefGoogle Scholar
  26. [26]
    P.V. Lade: Static instability and liquefaction on loose fine sandy slopesJ. Geo. Engng. ASCE118, pp. 51–71, 1992.CrossRefGoogle Scholar
  27. [27]
    P.V. Lade, R.B. Nelson: Modelling the elastic behaviour of granu­lar materialsInt. J. Num. Anal. Meth. Geom.11, pp. 521–542, 1987.CrossRefGoogle Scholar
  28. [28]
    R. Lagioia, A.M. Puzrin, D.M. Potts: A new versatile expression for yield and plastic potential surfacesComputers and Geotechnics19, pp. 171–193, 1996.CrossRefGoogle Scholar
  29. [29]
    J. Lanier, C. DI Prisco, R. Nova: Etude experimentale et analyse théorique de l’anisotropie induite du sable d’HostunRevue Française de Géotechnique57, pp. 59–74, 1991.Google Scholar
  30. [30]
    J. Lanier, Z. Zitouni: Development of a data base using the Greno­ble true triaxial apparatus, in: A.S. Saada, G.F. Bianchini (eds.):Constitutive Equations for Granular Non-Cohesive SoilsBalkema, Rotterdam, 1988, pp. 47–58.Google Scholar
  31. [31]
    R. Matiotti: Analisi Sperimentale del Fenomeno della Liquefazione Statica delle Sabbie Sciolte e sue Applicazioni NumerichePh.D. thesis, Politecnico di Milano, 1996.Google Scholar
  32. [32]
    M. Megachou:Stabilité des Sables Laches. Essais et ModélisationsPh.D. thesis, INPG, Grenoble, 1993.Google Scholar
  33. [33]
    K. Miura, S. TOKI, S. Miura: Deformation prediction for anisotropic sand during the rotation of principal stress axesSoils and Foundations26, pp. 42–56, 1986.CrossRefGoogle Scholar
  34. [34]
    Z. Mroz, V.A. Norris, O.C. Zienkiewicz: Application of an anisotropic hardening model in the elasto-plastic deformation of soilsGéotechnique29, pp. 1–34, 1979.CrossRefGoogle Scholar
  35. [35]
    H.-B. Mühlhaus: Scherfugenanalyse bei granularem material im rah­men der Cosserat-theorieIngenieur Archiv56, pp. 389–399, 1986.CrossRefGoogle Scholar
  36. [36]
    R. Nova: On the hardening of soilsArchiw. Mech. Stos. 29, pp. 445–458, 1977.Google Scholar
  37. [37]
    R. Nova: A constitutive model for soil under monotonic and cyclic loading, in: G. N. Pande, O. C. Zienkiewicz (eds.):Soil Mechanics: Transient and Cyclic LoadsJohn Wiley and Sons, New York, 1982, pp. 343–373.Google Scholar
  38. [38]
    R. Nova: A model of soil behaviour in plastic and hysteretic ranges. Part I - Monotonic loading, in: G.Gudehus, F. Darve, I. Var­doulakis (eds.):Constitutive Relations for SoilsBalkema, Rotter­dam, 1984, pp. 289–309.Google Scholar
  39. [39]
    R. Nova: Sinfonietta classica: an exercise on classical soil modelling, in: A.S. Saada, G.F. Bianchini (eds.):Constitutive Equations for Granular Non-Cohesive SoilsBalkema, Rotterdam, 1988, pp. 510–519.Google Scholar
  40. [40]
    R. Nova: Liquefaction, stability, bifurcations of soil via strain-hardening plasticity, Proc. Int. Works.Numer.Meth. Localis. and Bi­furcat. of Granular BodiesGdansk, 1989, pp. 117–132.Google Scholar
  41. [41]
    R. Nova: A note on sand liquefaction and soil stability3rd Int. Conf. Constitutive Laws of Eng. Mat.Tucson, 1991, pp. 53–156.Google Scholar
  42. [42]
    R. Nova: Mathematical modelling of natural and engineered geo­materials, General lecture of 1st E.C.S.M. MunchenEur. J. Mech. A/SolidsSpecial issue 11, pp. 135–154, 1992.Google Scholar
  43. [43]
    R. Nova: Controllability of the incremental response of soil specimens subjected to arbitrary loading programmesJ. Mech. Behay. Mater.5, pp. 193–201, 1994.Google Scholar
  44. [44]
    R. Nova, S. Imposimato: Non-uniqueness of the incremental re­sponse of soil specimens under true-triaxial stress paths, in: G.N. Pande, S. Pietruszczak (eds.):Numerical Models in Geomechanics - Proc. NUMOG VI 1997 Montreal CanadaBalkema, Rotterdam, 1997, pp. 193–197.Google Scholar
  45. [45]
    R. Nova, S. Imposimato: Analysis of instability conditions for nor­mally consolidated soils, in: W. Ehlers (ed.):Proc. IUTAM Sympo­sium on “Theoretical and Numerical Methods in Continuum Mechan­ics of Porous Materials”Kluwer Academic Publishers, Dordrecht, 2001, pp. 265–272.Google Scholar
  46. [46]
    R. Nova, D.M. Wood: A constitutive model for sand in triaxial compressionInt. J. Num. Anal. Meth. Geomech.3, pp. 255–278, 1979.CrossRefGoogle Scholar
  47. [47]
    A. OSTROWSKI, O. Taussky: On the variation of the determinant of a positive definite matrix, Neder. Akad. Wet. Proc. A54, pp. 333–351, 1951.Google Scholar
  48. [48]
    H.B. Poorooshasb, I. Holubec, A.N. Sherbourne: Yielding and flow of sand in triaxial compression (part I)Can. Geot. J. 4, pp. 179–190, 1966.CrossRefGoogle Scholar
  49. [49]
    H.B. Poorooshasb, I. Holubec, A.N. Sherbourne: Yielding and flow of sand in triaxial compression (part II and part III)Can. Geot. J.4, pp. 376–397, 1966.CrossRefGoogle Scholar
  50. [50]
    P. Perzyna: The constitutive equations for rate sensitive plastic ma­terials, Quart.Appl. Math.20, pp. 321–332, 1963.MathSciNetMATHGoogle Scholar
  51. [51]
    G. Pijaudier-Cabot, Z.P. Bazant: Nonlocal damage theoryJ. Eng. Mech. ASCE113, pp. 1512–1533, 1987.CrossRefGoogle Scholar
  52. [52]
    J.-H. Prévost: Mathematical modelling of monotonic and cyclic undrained clay behaviourInt. J. Num. Anal. Meth. Geomech.1, pp. 195–216, 1977.MATHCrossRefGoogle Scholar
  53. [53]
    J.-H. Prevost, B. Loret: Dynamic strain localisation in elasto (visco) plastic solids: part 2: plane strain examplesComputer Methods App. Mech. Eng.83, pp. 275–294, 1990.MATHCrossRefGoogle Scholar
  54. [54]
    A.M. Puzrin, E. Kirschenboim: Kinematic hardening model for overconsolidated clays, Computers and Geotechnics 28, pp. 1–36, 2001.CrossRefGoogle Scholar
  55. [55]
    K.H. ROSCOE, J.B. Burland: Stress strain behaviour of wet clay, in: C.R. Calladine (ed.):Engineering PlasticityCambridge University Press, Cambridge, 1968, pp. 535–609.Google Scholar
  56. 56.
    J.W. Rudnicki, J.R. Rice: Conditions for the localisation of defor­mation in pressure sensitive dilatant materialsJ. Mech. Phys. Solids23, pp. 371–394, 1975.CrossRefGoogle Scholar
  57. [57]
    G. Schneebeli: Une analogie mécanique pour les terres sans cohésionComptes Rendus Acad. Sc.243, p. 125, 1956.Google Scholar
  58. [58]
    A.N. Schofield, C.P. Wroth:Critical State Soil MechanicsMcGraw-Hill, Chichester, 1968.Google Scholar
  59. [59]
    M.A. Stroud:The Behaviour of Sand at Low Stress Levels in the Simple Shear ApparatusPh.D. thesis, University of Cambridge, 1971.Google Scholar
  60. [60]
    F. TATSUOKA:Shear Tests in aTriaxial Apparatus. A Fundamen­tal Research on the Deformation of SandPh.D. thesis, University of Tokyo (in Japanese), 1972.Google Scholar
  61. [61]
    F. Tatsuoka, K. Ishihara: Yielding of sand in triaxial compressionSoils and Foundations12, pp. 63–76, 1974.CrossRefGoogle Scholar
  62. [62]
    K. Terzaghi: Die berechnung der durchlässigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungenSitz. Akad. Wissen. Wien. Math.-Naturw.-Schaf. Kl.Abt. IIa 132, pp. 125–138, 1923.Google Scholar
  63. [63]
    A.F. Walker:Stress Strain Relationships for ClayPh.D. thesis, Uni­versity of Cambridge, 1965.Google Scholar
  64. [64]
    R.K.S. WONG, J.R.F. Arthur: Induced and inherent anisotropy in sandGéotechnique35, pp. 471–481, 1985.CrossRefGoogle Scholar
  65. [65]
    H.M. Zbib, E.C. Aifantis: A gradient dependent flow theory of plas­ticity: application to metal and soil instabilitiesAppl. Mech. Rev.42, pp. 295–304, 1989.CrossRefGoogle Scholar
  66. [66]
    M. Zytynsky, M.F. Randolph, R. Nova, C.P. Wroth: On mod­elling the unloading-reloading behaviour of soilsInt. J. Num. Anal. Meth. Geomech.2, pp. 87–94, 1978.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Roberto Nova
    • 1
  1. 1.Dipartimento di Ingegneria Strutturale Politecnico di MilanoPiazza Leonardo da Vinci, 32MilanoITALY

Personalised recommendations