Semiclassical Approximation in Chern—Simons Gauge Theory

  • David H. Adams
Part of the Progress in Mathematics book series (PM, volume 205)


The semiclassical approximation for the partition function in Chern—Simons gauge theory is derived using the invariant integration method. Volume and scale factors which were undetermined and had to be fixed by hand in previous derivations are automatically taken account of in this framework. Agreement with Witten’s exact expressions for the partition function in the weak coupling (large k) limit is verified for gauge group SU(2) and spacetimes S3, S2 x Si, Si x Si x S1 and L(p, q).


Gauge Theory Partition Function Modulus Space Gauge Group Wilson Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, Commun. Math. Phys. 121 (1989), 351.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D.S. Freed and R. Gompf, Phys. Rev. Lett. 66 (1991), 1255; Commun. Math. Phys. 141 (1991), 79.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    L. Jeffrey,Commun. Math. Phys. 147 (1992), 563.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    L. Rozansky, Commun. Math. Phys. 171 (1995), 279; L. Rozansky, in: Knots and Applications, ed. L. Kauffman, World Scientific, 1995.Google Scholar
  5. 5.
    D.H. Adams and S. Sen, Phys. Lett. B 353 (1995), 495.MathSciNetCrossRefGoogle Scholar
  6. 6.
    A.S. Schwarz, Commun. Math. Phys. 64 (1979), 233.MATHCrossRefGoogle Scholar
  7. 7.
    [] K. Walker, Preprint. 64 (1979), 233MATHGoogle Scholar
  8. 8.
    N. Reshetikhin and V. Turaev, Invent. Math. 103 (1991), 547MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    S. Donaldson, The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990.MATHGoogle Scholar
  10. 10.
    D. Ray and I. Singer, Adv. Math. 7 (1971), 145.MathSciNetMATHGoogle Scholar
  11. 11.
    A.S. Schwarz, Commun. Math. Phys. 67 (1979), 1.MATHCrossRefGoogle Scholar
  12. 12.
    [] D.H. Adams and S. Sen, T.C.D. Preprint, 67 950–3095.Google Scholar
  13. 13.
    M. Atiyah, Topology 29 (1990), 1.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    D. Ray and I. Singer, Proceedings of Symposia in Pure Mathematics, Vol. 23 (American Mathematical Society, Providence, 1973), p. 167.Google Scholar
  15. 15.
    M. Atiyah, V. Patodi and I. Singer, Math. Proc. Cambridge Philos. Soc. 78 (1975), 405.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    David H. Adams J. Cheeger, Ann. Math. 109 (1979), 259; W. Müller, Adv. Math. 28 (1978), 233.CrossRefGoogle Scholar
  17. 17.
    J. Andersen, Aarhus Univ., Preprint (Math. dept., 1995 series, no. 13). 405Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • David H. Adams
    • 1
  1. 1.School of MathematicsTrinity CollegeDublin 2Ireland

Personalised recommendations