Asymptotic Behaviour of Semi-Infinite Geodesics for Maximal Increasing Subsequences in the Plane

  • Mario V. Wüthrich
Part of the Progress in Probability book series (PRPR, volume 51)


We consider for a given Poissonian cloud ω in ℝ2the maximal up/right path fromxto y(x, y∈ ℝ2), where maximal means that it contains as many points ofω as possible. We prove that with probability 1 there exist for every up/right direction semi-infinite maximal paths (unigeodesics), every unigeodesic has a direction and if there are two unigeodesics with the same direction they must meet and then coalesce. Out of these results we are able to construct a Busemann type function, which behaves at most diffusively.


Maximal Path Busemann Function Curvature Assumption Asymptotic Shape Euclidean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldous, D. and Diaconis, P., Hammersley’s interacting particle process and longest increasing subsequencesProb. Theo. Rel. Fields 103 (1995), 199–213.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baik, J., Deift, P. A., and Johansson, K., On the distribution of the longest increasing subsequence in a random permutationJ. Amer. Math. Soc. 12 (1999), 1119–1178.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ballmann, W.Lectures on Spaces of Nonpositive CurvatureBirkhäuser Verlag, Basel, 1995.CrossRefGoogle Scholar
  4. 4.
    Burton, R. and Keane, M., Density and uniqueness in percolationCommun. Math. Phys. 121 (1989), 501–505.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grimmett, G. R., Percolation and disordered systems. InEcole d’été de Probabilités de St. Flour XXVI-1996 Lectures on probability theory and statisticsP. Bernard, Ed., vol. 1665, Springer-Verlag, 1997, pp. 153–300.Google Scholar
  6. 6.
    Hammersley, J. M., A few seedlings of research. InProc. Sixth Berkeley Symp. Math. Stat. and Prob., vol. 1University of California Press, 1972, pp. 345–394.MathSciNetGoogle Scholar
  7. 7.
    Howard, C. D. and Newman, C. M., Euclidean models of first-passage percolation.Prob. Theo. Rel. Fields 108(1997), 153–170.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Howard, C. D. and Newman, C. M., Geodesics and spanning trees for Euclidean first-passage percolationAnn. Probab. 29(2001), 577–623.MATHMathSciNetGoogle Scholar
  9. 9.
    Johansson, K., Transversal fluctuations for increasing subsequences on the planeProb. Theo. Rel. Fields 116(2000), 445–456.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kesten, H., Aspects of first-passage percolation. InEcole d’été de Probabilités de St. Flour XIV-1984, P. L. Hennequin, Ed., vol. 1180, Springer-Verlag, 1985, pp. 125–264.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Krug, J. and Spohn, H., Kinetic roughening of growing surfaces. InSolids far from equilibrium C. Godr¨¨che, Ed., Cambridge University Press, 1991, pp. 479–582.Google Scholar
  12. 12.
    Newman, C. M., A surface view of first-passage percolation. InProceedings of the International Congress of Mathematicians S. D. Chatterji, Ed., Birkhäuser Verlag, Basel, 1995, pp. 1017–1023.CrossRefGoogle Scholar
  13. 13.
    Newman, C. M., Topics in disordered systems. InLectures in Mathematics ETH Zürich,Birkhäuser Verlag, Basel, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Mario V. Wüthrich
    • 1
  1. 1.Römerstrasse 17Winterthur InsuranceWinterthurSwitzerland

Personalised recommendations