Advertisement

Effect of Agitation on Removal of Acetic Acid from Pretreated Hydrolysate by Activated Carbon

Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The effect of agitation on the adsorption of acetic acid by activated carbon was tested utilizing an external mass transfer-diffusion model. Simulated pretreated biomass was contacted with activated carbon under prescribed conditions of temperature and agitation. Adsorption isotherm studies are presented as well as batch kinetic rate studies. Use of these data enabled the determination of isotherm constants, an external mass transfer coefficient, and an effective diffusivity for each agitation rate studied. The external film coefficient results ranged from 33.62 µm/s to a complete absence of external mass transfer resistance, and the diffusivity results ranged from 0.8625 to 10.70 µm2/s. The optimum combination of no external film resistance, and highest diffusivity, 10.70 µm2/s, occurred at 250 rpm and 25°C. The results of these models and the experimental parameters suggested an efficacious method and conditions for the removal of this undesirable chemical.

Index Entries

Adsorption activated carbon external mass transfer effective diffusivity detoxification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77–79, 133–142.CrossRefGoogle Scholar
  2. 2.
    Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Terrborg, C, Stanberg, K., Zacchi, G., and Nilvebrant, N. O. (1999), Enzyme Microbiol Technol. 24, 151–159.CrossRefGoogle Scholar
  3. 3.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl Biochem. Biotechnol. 67, 185–198.CrossRefGoogle Scholar
  4. 4.
    Larsson, S., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (1999), Appl Biochem. Biotechnol. 77–79, 91–103.CrossRefGoogle Scholar
  5. 5.
    Lee, W. G., Lee, J. S., Shin, C. S., Park, S. C., Chang, H. N., and Chaik, Y. K. (1999), Appl Biochem. Biotechnol. 77–79, 547–559.PubMedCrossRefGoogle Scholar
  6. 6.
    Rivard, C. J., Engel, R. E., Hayard, T. K., Nagle, N. J., Hatzis, C, and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57–58, 183–191.CrossRefGoogle Scholar
  7. 7.
    Jonsson, L. J., Palmqvist, E., Nilvebrant, N. O., and Hahn-Hagerdal, B. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.CrossRefGoogle Scholar
  8. 8.
    Hassler, J. W. (1974), Purification with Activated Carbon, Chemical Publishing Company, New York, NY.Google Scholar
  9. 9.
    Morresi, A. C. and Cheremisinoff, P. N. (1978), in Carbon Adsorption Handbook, Cheremisinoff, P. N and Ellerbusch, F., eds., Ann Arbor Science, Ann Arbor, MI, pp. 1–54.Google Scholar
  10. 10.
    Mathews, A. P. and Weber, W. J. (1977), AIChE Symp. Ser. 166 73, 91–98.Google Scholar
  11. 11.
    McKay, G. (1983), J. Chem. Technol. Biotechnol. 33A, 205–218.Google Scholar
  12. 12.
    Bird, R. B., Stewart, W. E., and Lighfoot, E. N. (1960), Transport Phenomena, John Wiley & Sons, New York, NY.Google Scholar
  13. 13.
    Suzuki, M. (1990), Adsorption Engineering, Elsevier Science, New York, NY.Google Scholar
  14. 14.
    Crank, J. (1956), The Mathematics of Diffusion, Oxford University Press, London, UK.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations