Skip to main content

Outlook

  • Chapter
  • 1611 Accesses

Part of the book series: Progress in Mathematical Physics ((PMP,volume 33))

Abstract

Electrodynamics describes only one out of four interactions in nature. And classical electrodynamics covers only the nonquantum aspects of the electromagnetic field. Therefore electrodynamics is related to the other fields of knowledge in physics in a multitude of different ways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959) 485–491.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Blagojevie, Gravitation and Gauge Symmetries (IOP Publishing: Bristol, UK, 2002).

    Book  Google Scholar 

  3. F. Cap, Lehrbuch der Plasmaphysik and Magnetohydrodynamik (Springer: Wien, 1994).

    Book  Google Scholar 

  4. R.G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux, Phys. Rev. Lett. 5 (1960) 3–5.

    Article  Google Scholar 

  5. A.E. Chubykalo and A. Espinoza, Unusual formations of the free electromagnetic field in vacuum, J. Phys. A35 (2002) 8043–8053.

    MathSciNet  Google Scholar 

  6. S. Deser, R. Jackiw, and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975–978; S. Deser, R. Jackiw, and S. Templeton, Topologically massive gauge theories, Ann. Phys. (NY) 140 (1982) 372–411 [Erratum, Ann. Phys. (NY) 185 (1988) 406].

    Article  Google Scholar 

  7. A. Einstein, The Meaning of Relativity, 5th ed. (Princeton University Press: Princeton, 1955).

    MATH  Google Scholar 

  8. T. Frankel, Gravitational Curvature. An Introduction to Einstein’s Theory (Freeman: San Francisco, 1979).

    MATH  Google Scholar 

  9. T. Frankel, Electric currents in multiply connected spaces, Intern. J. Theor. Phys. 27 (1988) 995–999.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Fröhlich and B. Pedrini, New applications of the chiral anomaly, in: “Mathematical Physics 2000”, Eds. A. Fokas, A. Grigoryan, T. Kibble, and B. Zegarlinski (Imperial College Press: London, 2000), pp. 9–47; Eprint Archive hep-th/0002195.

    Chapter  Google Scholar 

  11. F. Gronwald and F.W. Hehl, On the Gauge Aspects of Gravity, in Proc. of the 14th Course of the School of Cosmology and Gravitation on `Quantum Gravity’, held at Erice, Italy, May 1995, P.G. Bergmann, V. de Sabbata, and H.-J. Treder, eds. (World Scientific: Singapore, 1996) pp. 148–198; Eprint Archive gr-qc/9602013.

    Google Scholar 

  12. F.W. Hehl, J. Lemke, and E.W. Mielke, Two lectures on fermions and gravity, in: Geometry and Theoretical Physics, Proc. of the Bad Honnef School 12–16 Feb 1990, J. Debrus and A.C. Hirshfeld, eds. (Springer: Heidelberg, 1991) pp. 56–140.

    Google Scholar 

  13. F.W. Hehl and A. Macías, Metric-affine gauge theory of gravity II. Exact solutions, Int. J. Mod. Phys. D8 (1999) 399–416.

    Google Scholar 

  14. F.W. Hehl, A. Macías, E.W. Mielke, and Yu.N. Obukhov, On the structure of the energy-momentum and the spin currents in Dirac’s electron theory, in: “On Einstein’s Path”, Essays in honor of E.Schucking, A. Harvey, ed. (Springer: New York, 1998) 257–274.

    Google Scholar 

  15. M. Heusler, Black Hole Uniqueness Theorems (Cambridge University Press: Cambridge, UK, 1996).

    Book  Google Scholar 

  16. H. Hora, Plasmas at High Temperature and Density: Applications and Implications of Laser-Plasma Interaction. Lecture Notes in Physics m 1 (Springer: Berlin, 1991).

    Google Scholar 

  17. J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63 (1989) 199–202.

    Article  Google Scholar 

  18. J.K. Jain, Composite fermion theory of fractional quantum Hall effect, Acta Phys. Polon. B26 (1995) 2149–2166.

    Google Scholar 

  19. H.E. Knoepfel, Magnetic Fields. A comprehensive theoretical treatise for practical use (Wiley: New York, 2000).

    Google Scholar 

  20. S.S. Komissarov, Time-dependent, force-free, degenerate electrodynamics, Mon. Not. R. Astron. Soc. 336 (2002) 759–766.

    Article  Google Scholar 

  21. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Vol.2 of Course of Theoretical Physics, p. 281; transl. from the Russian (Pergamon: Oxford, 1962).

    Google Scholar 

  22. G.E. Marsh, Force-Free Magnetic Fields: Solutions, topology and applications (World Scientific: Singapore, 1996).

    Book  Google Scholar 

  23. G.E. Marsh, Topology in electromagnetics, in: Frontiers in Electromagnetics, D.H. Werner and R. Mittra, eds. (IEEE: New York, 2000) pp. 258–288.

    Google Scholar 

  24. H.K. Moffatt, Magnetic Fields Generated in Electrically Conducting Fluids (Cambridge Univ. Press: Cambridge, 1978).

    Google Scholar 

  25. Y. Nambu, The Aharonov-Bohm problem revisited, Nucl. Phys. B579 (2000) 590–616; Eprint Archive: hep-th/ 9810182.

    Article  MathSciNet  Google Scholar 

  26. R.A. Puntigam, C. Lämmerzahl, and F.W. Hehl, Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle, Class. Quantum Gray. 14 (1997) 1347–1356.

    Article  MATH  Google Scholar 

  27. R.A. Puntigam, E. Schrüfer, and F.W. Hehl, The use of computer algebra in Maxwell’s theory. In Computer Algebra in Science and Engineering, J. Fleischer et al., eds. (World Scientific: Singapore, 1995) pp. 195–211; Eprint Archive: gr-gc/9503023.

    Google Scholar 

  28. N. Straumann, The membrane model of black holes and applications. In: Black Holes: Theory and Observation, F.W. Hehl, C. Kiefer, and R.J.K. Metzler, eds. (Springer: Berlin, 1998) pp. 111–156.

    Google Scholar 

  29. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill: New York, 1996).

    Google Scholar 

  30. V.I. Tsebro and O.E. Omel’yanovskii, Persistent currents and magnetic flux trapping in a multiply connected carbon nanotube structure, PhysicsUspekhi 43 (2000) 847–853 [the Russian version is contained in 170 (2000) 899–916].

    Google Scholar 

  31. M.R. Zirnbauer, Elektrodynamik. Tex-script July 1998 (Springer: Berlin, to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hehl, F.W., Obukhov, Y.N. (2003). Outlook. In: Foundations of Classical Electrodynamics. Progress in Mathematical Physics, vol 33. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0051-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0051-2_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6590-0

  • Online ISBN: 978-1-4612-0051-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics