More Mathematics

  • Friedrich W. Hehl
  • Yuri N. Obukhov
Chapter
Part of the Progress in Mathematical Physics book series (PMP, volume 33)

Abstract

In Part A we outlined exterior algebra and exterior calculus on differential manifolds that are “bare” in the sense that no other geometrical structures are assumed on them. The corresponding mathematical machinery proved to be sufficient for the formulation in Part B of the general framework of classical electrodynamics.

Keywords

Manifold Assure Arena Electromagnetism Derrick 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blagojevie, J. Garecki, F.W. Hehl, Yu.N. ObukhovReal null coframes in general relativity and GPS type coordinates Phys. Rev. D65(2002) 044018 (6 pages).Google Scholar
  2. 2.
    B. CollCoordenadas luz en relatividad.In Proc. 1985 Spanish Relativity Meeting, A. Molina (ed.) (Ser. Pub. ETSEIB: Barcelona, Spain, 1985) pp. 29–38. An English translationLight coordinates in relativityis available on the author’s homepagehttp://www.coil.cc[The abstract of this article reads: “The construction of coordinate systems by intersection of four beams of light is analyzed.”)
  3. 3.
    B. CollElements for a theory of relativistic coordinate systems. Formal and physical aspects.In Proc. 23th Spanish Relativity Meeting ERES 2000 (World Scientific: Singapore, 2001) pp. 53–65.Google Scholar
  4. 4.
    B. Coll and J.A. MoralesSymmetric frames on Lorentzian spaces J. Math. Phys. 32(1991) 2450–2455.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    G.H. DerrickOn a completely symmetric choice of space-time coordinates J. Math. Phys. 22(1981) 2896–2902.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    A. EinsteinGeometrie and Erfahrung Sitzungsber. Preuss.Akad.Wiss.(1921) pp. 123–130.CrossRefGoogle Scholar
  7. 7.
    D. Finkelstein and J.M. GibbsQuantum relativity Int. J. Theor. Phys. 32 (1993)1801–1813; D.R. FinkelsteinQuantum Relativity.A Synthesis of the Ideas of Einstein and Heisenberg (Springer: Berlin, 1996) pp. 326–328.Google Scholar
  8. 8.
    G. HarnettThe bivector Clifford algebra and the geometry of Hodge dual operators J. Phys. A25(1992) 5649–5662.MathSciNetGoogle Scholar
  9. 9.
    D. HartleyNormal frames for non-Riemannian connections, Class.Quantum Gray. 12 (1995) L103–L105.CrossRefGoogle Scholar
  10. 10.
    P. von der HeydeThe equivalence principle in the U4 theory of gravitation Lettre al Nuovo Cimento14 (1975) 250–252.CrossRefGoogle Scholar
  11. 11.
    B.Z. IlieyNormal frames and the validity of the equivalence principle. 3. The case along smooth maps with separable points of selfintersection J. Phys.A31 (1998) 1287–1296.Google Scholar
  12. 12.
    Y. ItinCoframe energy-momentum current. Algebraic properties Gen.Relat. Gray. J.34(2002) No.11. Eprint Archive gr-qc/0111087.MathSciNetGoogle Scholar
  13. 13.
    E. KrönerContinuum theory of defectsin:Physics of DefectsLes Houches, Session XXXV, 1980, R. Balian et al., eds. (North-Holland: Amsterdam, 1981) pp. 215–315.Google Scholar
  14. 14.
    M. Pantaleo, ed.Cinquant’anni di Relatività 1905–1955(Edizioni Giuntine and Sansoni Editore: Firenze, 1955).MATHGoogle Scholar
  15. 15.
    C. RovelliGPS observables in general relativity. Phys. Rev. D65(2002) 044017 (6 pages).Google Scholar
  16. 16.
    M. SchönbergElectromagnetism and gravitation Rivista Brasileira de Fisica1 (1971) 91–122.Google Scholar
  17. 17.
    H. UrbantkeA quasi-metric associated with SU(2) Yang—Mills field Acta Phys. Austriaca Suppl.XIX (1978) 875–816.Google Scholar
  18. 18.
    H. Weyl50 Jahre Relativitätstheorie Die Naturwissenschaften 38(1950) 73–83.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Friedrich W. Hehl
    • 1
    • 2
  • Yuri N. Obukhov
    • 1
    • 3
  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany
  2. 2.Department of Physics & AstronomyUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Department of Theoretical PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations