Advertisement

Perverse Sheaves and Quantum Grothedieck Rings

  • M. Varagnolo
  • E. Vasserot
Chapter
Part of the Progress in Mathematics book series (PM, volume 210)

Abstract

We give a geometric construction of a deformation of the Grothendieck ring of finite-dimensional representations of quantized affine algebras. It yields a positivity result for products of some canonical element. In the classical case, related partial results are given on tensor categories of representations of simple Lie algebras.

Keywords

Quantum Group Direct Summand Full Subcategory Tensor Category Perverse Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BZ]
    Berenstein, A. and Zelevinsky, A., String bases for quantum groups of typeA r Advances in Soviet Math.16 (1993), 51–89.MathSciNetGoogle Scholar
  2. [Cl]
    Crawley-Boevey, W., Geometry of the moment map for representations of quiversCompositio Math.126 (2001), 257–293.MathSciNetMATHCrossRefGoogle Scholar
  3. [C2]
    Crawley-Boevey, W., Normality of Marsden-Weinstein reductions for representations of quivers, math. AG/0105247.Google Scholar
  4. [CG]
    Chriss, N. and Ginzburg, V.Representation Theory and Complex GeometryBirkhäuser, Boston, 1997.MATHGoogle Scholar
  5. [D]
    Damiani, I., La R-matrice pour les alg¨¨bres quantiques de type affine non torduAnn. Sci. École Norm. Sup.31, (4) (1998), 493–523.MathSciNetMATHGoogle Scholar
  6. [FM]
    Frenkel, E. and Mukhin, E., Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, math. QA/9911112.Google Scholar
  7. [PR]
    Frenkel, E. and Reshetikhin, N., The q-characters of representations of quantum affine algebras and deformations of W-algebrasContemporary Math.248 (2000), 163–205.MathSciNetCrossRefGoogle Scholar
  8. [GV]
    Ginzburg, V. and Vasserot, E., Langlands reciprocity fo affine quantum groups of typeA n Internat. Math. Res. Notices3 (1993), 67–85.MathSciNetCrossRefGoogle Scholar
  9. [Ka]
    Kashiwara, M., On level zero representations of quantized affine algebras, math.QA/0010293.Google Scholar
  10. [Kn]
    Knight, H., Spectra of tensor products of finite-dimensional representations of YangiansJ. Algebra174 (1994), 187–196.CrossRefGoogle Scholar
  11. [L1]
    Lusztig, G., Introduction to Quantum Groups, Birkhäuser, Boston, 1994.Google Scholar
  12. [L2]
    Lusztig, G., On quiver varietiesAdv. in Math.136 (1998), 141–182.MathSciNetMATHCrossRefGoogle Scholar
  13. [LNT]
    Leclerc, B., Nazarov, M., and Thibon, J.-Y., Induced representations of affine Hecke algebras and canonical bases of quantum groups, math. QA/ 0011074.Google Scholar
  14. [M]
    Malkin, A., Tensor product varieties and crystals. ADE case, math.AG/0103025.Google Scholar
  15. [N1]
    Nakajima, H., Quiver varieties and Kac-Moody algebrasDuke Math. J.91 (1998), 515–560.MathSciNetMATHCrossRefGoogle Scholar
  16. [N2]
    Nakajima, H., Quiver varieties and finite dimensional representations of quantum affine algebrasJour. A.M.S.14 (2001), 145–238.MathSciNetMATHGoogle Scholar
  17. [N3]
    Nakajima, H., t-analogue of the q-character of finite dimensional representations of quantum affine algebras, math. QA/ 0009231.Google Scholar
  18. [Vr]
    Varagnolo, M., Quiver varieties and YangiansLetters in Math. Phys.53 (2000), 273–283.MathSciNetMATHCrossRefGoogle Scholar
  19. [Vs]
    Vasserot, E., Affine quantum groups and equivariant K-theoryTransformation Groups3 (1998), 269–299.MathSciNetMATHCrossRefGoogle Scholar
  20. [VV]
    Varagnolo, M. and Vasserot, E., Standard modules of quantum affine algebras, math. QA/ 0006084.Google Scholar
  21. [X]
    Xu, F., A note on quivers with symmetries, math. QA/ 9707003.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. Varagnolo
    • 1
  • E. Vasserot
    • 1
  1. 1.Département de MathématiquesUniversité de Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations