Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 472 Accesses

Abstract

This chapter derives algorithms to estimate the aircraft state vector and to approximate the nonlinear forces and moments acting on the aircraft. The forces and moments are approximated as functions of (a portion of) the state vector over the aircraft operating envelope. The force and moment approximators are developed using the “nondimensionalized coefficient” representation that is standard in the aircraft literature. A Lyapunov-like function is used to prove the convergence of the estimator state and to discuss conditions sufficient for the convergence of the approximated force and moment functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems, AIAA/ANSI R-004 1992.

    Google Scholar 

  2. M. A. Khan and P. Lu, “New technique for nonlinear control of aircraft,” J. Guidance, Control, and Dynamics, vol. 17 no. 5, pp. 1055–1060,1994.

    Article  MATH  Google Scholar 

  3. M. Azam and S. N. Singh, “Invertibility and trajectory control for nonlinear maneuvers of aircraft,” J. Guidance, Control, and Dynamics, vol. 17, no. 1, pp. 192–200, Jan.-Feb. 1994.

    Article  MATH  Google Scholar 

  4. W. L. Baker and J. A. Farrell, “Connectionist learning systems for control,” Proc. SPIE Conference on Optical Engineering, Boston, MA, Nov. 1990.

    Google Scholar 

  5. W. L. Baker and J. A. Farrell, “An introduction to connectionist learning control systems,” in Handbook of Intelligent Control: Neural Fuzzy, and Adaptive Approaches, D. A. White and D. A. Sofge, Eds., Chapter 2, Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  6. J. G. Batterson and V. Klein, “Partitioning of flight data for aerodynamic modeling of aircraft at high angles of attack,” J. Aircraft, vo. 26, no. 4, pp. 334–339, 1989.

    Article  Google Scholar 

  7. D. J. Bugajski, D. F. Enns, and M. R. Elgersma, “A dynamic inversion based control law with application to high angle of attack research vehicle,” AIAA90–3407-CP, pp. 826–839, 1992.

    Google Scholar 

  8. J. Y. Choi and J. A. Farrell, “Nonlinear adaptive control using networks of piecewise linear approximators,” IEEE Trans. Neural Networks, vol. 11, no. 2, pp. 390–401,2000.

    Article  Google Scholar 

  9. J. Farrell, “Stability and approximator convergence in nonparametric nonlinear adaptive control,” IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 1008–1020, Sept. 1998.

    Article  Google Scholar 

  10. W. L. Gerrard, D. F. Enns, and A. Snell, “Nonlinear longitudinal control of a supermaneuverable aircraft,” Proc. 1989 American Control Conference, vol. 1, pp. 142–147, 1989.

    Google Scholar 

  11. S. H. Lane and R. F. Stengel, “Flight control design using nonlinear inverse dynamics,” Automatica, vol. 31, no. 4, pp. 781–806, 1988.

    MathSciNet  Google Scholar 

  12. P. K. A. Menon, M. E. Badget, R. A. Walker, and E. L. Duke, “Nonlinear flight test trajectory controllers for aircraft,” J. Guidance, Control, and Dynamics, vol. 10, no. 1, pp. 67–72, 1987.

    Article  MATH  Google Scholar 

  13. G. Meyer, R. Su, and L. R. Hunt, “Application of nonlinear transformations to automatic flight control,” Automatica, vol. 20, no. 1, pp. 103–107, 1984.

    Article  MATH  Google Scholar 

  14. M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear sys-tems,” IEEE Trans. Automatic Control, vol. 41, no. 3, pp. 447–451, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Polycarpou and M. Mears, “Stable adaptive tracking of uncertain systems using nonlinearly parameterized on-line approximators,” Int. J. Control, vol. 70, no. 3, pp. 363–384, May 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-J. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    MATH  Google Scholar 

  17. S. A. Snell, D. E Enns, and W. L. Garrard, Jr., “Nonlinear inversion flight control for a supermaneuverable aircraft,” J. Guidance, Control, and Dynamics, vol. 14, no. 4, pp. 976–984, 1992.

    Article  MathSciNet  Google Scholar 

  18. M. Sharma, A. J. Calise, and J. E. Corban, “Application of an adaptive autopilot design to a family of guided munitions,” Proc. AIAA Guidance, Navigation, and Control Conference, AIAA-2000–3969, 2000.

    Google Scholar 

  19. B. L. Stevens and E L. Lewis, Aircraft Control and Simulation, John Wiley, New York, 1992.

    Google Scholar 

  20. T. L. Trankle and S. D. Bachner, “Identification of a nonlinear aerodynamic model of the F-14 aircraft,” J. Guidance, Control, and Dynamics, vol. 18, no. 6, pp. 1292–1297,1995.

    Article  Google Scholar 

  21. T. L. Trankle, J. H. Vincent, and S. N. Franklin, “System identification of nonlinear aerodynamic models,” in Advances in the Techniques and Technology of the Application of Nonlinear Filters and Kalman Filters, AGARDograph No. 256, Mar. 1982.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farrell, J., Sharma, M., Polycarpou, M. (2003). Online Approximation-Based Aircraft State Estimation. In: Liu, D., Antsaklis, P.J. (eds) Stability and Control of Dynamical Systems with Applications. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0037-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0037-6_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6583-2

  • Online ISBN: 978-1-4612-0037-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics