Representations of Quantum Tori and G-bundles on Elliptic Curves

  • Vladimir Baranovsky
  • Sam Evens
  • Victor Ginzburg
Chapter
Part of the Progress in Mathematics book series (PM, volume 213)

Abstract

We study a BGG-type category of infinite-dimensional representations of H[W]a semidirect product of the quantum torus with parameter q, built on the root lattice of a semisimple group Gand the Weyl group of G. Irreducible objects of our category turn out to be parametrized by semistable G-bundles on the elliptic curve C*/qZ.

Keywords and phrases

nilpotent coadjoint orbit Dixmier algebra symplectic reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BG]
    V. Baranovsky, V. Ginzburg. Conjugacy classes in loop groups and G-bundles on elliptic curves,Intern. Math. Research Notices 15(1996), 733–751.MathSciNetCrossRefGoogle Scholar
  2. [CG]
    N. Chriss, V. Ginzburg. Representation theory and Complex Geometry, Birkhäuser, Boston 1997.MATHGoogle Scholar
  3. [Hu]
    B. Huppert: Character theory of finite groups. de Gruyter Expositions in Mathematics25Walter de Gruyter & Co., Berlin, 1998.CrossRefGoogle Scholar
  4. [La]
    Y.Laszlo. About G-bundles over elliptic curvesAnn.inst.Fourier(Grenoble) 48(1998),no.2,413–424.MathSciNetMATHCrossRefGoogle Scholar
  5. [LS]
    T. Levasseur, J.T. Stafford, Semi-simplicity of invariant holonomic systems on a reductive Lie algebraAmer. J. Math. 1191997, 1095–1117.MathSciNetMATHCrossRefGoogle Scholar
  6. [M]
    S. MontgomeryFixed Rings of Finite Automorphism Groups of Associative RingsLN in Math.818 Springer-Verlag, Berlin, New York1980. MATHGoogle Scholar
  7. [MR]
    J.C. McConnell, J.C. Robson:Noncommutative Noetherian RingsWiley, Chichester, 1987.MATHGoogle Scholar
  8. [PS]
    A. Pressley, G. Segal: Loop groups.Oxford Mathematical MonographsClarendon Press, Oxford, 1986MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Vladimir Baranovsky
    • 1
  • Sam Evens
    • 2
  • Victor Ginzburg
    • 3
  1. 1.Department of Mathematics 253–37CaltechPasadenaUSA
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA
  3. 3.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations