Two More Variations on the Triangular Theme

  • A. A. Kirillov
Part of the Progress in Mathematics book series (PM, volume 213)


The orbit method was created 40 years ago (see [K1]) in the attempt to describe the unitary dual N for the group N of upper triangular matrices with units on the main diagonal.


Manifold Convolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    André C.A.M., The regular character of the unitriangular group, J. Algebra 201 (1998), 1–52. On the coadjoint orbits of the unitriangular group, J. Algebra 180 (1996), 587–630.MathSciNetMATHCrossRefGoogle Scholar
  2. [HHKR]
    Hoffmann T., Kellendonk J., Kutz N. and Reshetikhin N., Factorization dynamics and Coxeter-Toda lattices, sols-int/9906013 (1999), 1–34.Google Scholar
  3. [IK]
    Isaacs I.M. and Karagueuzian D., Conjugacy in groups of upper triangular matrices, J. Algebra 202 (1998), 704–711; see also Erratum, J. Algebra 208, no. 2 (1998), 722.MathSciNetMATHCrossRefGoogle Scholar
  4. [Kaz]
    Kazhdan D., Proof of Springer’s hypothesis, Israel J. Math. 28, no. 4 (1977), 272–286.MathSciNetMATHGoogle Scholar
  5. [K1]
    Kirillov A.A., Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 35, no. 4 (1962), 57–101.MathSciNetGoogle Scholar
  6. [K2]
    Kirillov, A.A., Variations on the triangular theme. In E.B. Dynkin Sem-inar on Lie Groups, Amer. Math. Soc. Transl., Ser. 2, 1995, pp. 43–73.Google Scholar
  7. [KM]
    Kirillov A.A., Melnikov A., On a remarkable sequence of polynomials. In Algèbre Non-commutative, Groupes Quantiques et Invariants, Rencontre Franco-Belge, Reims 1995 (J. Alev, G. Cauchon, eds.), Publication SMF, No. 2, 1996, pp. 35–42.Google Scholar
  8. [L]
    Lehrer G.I., Discrete Series and the unipotent subgroup, Compositio Math. 28 (1974), 9–19.MathSciNetMATHGoogle Scholar
  9. [PWZ]
    Petkovsek M., Wilf H. and Zeilberger D., A = B, A.K. Peters, 1998, p. 244.Google Scholar
  10. [Y]
    Ning Yan, Representation theory for the finite unipotent linear groups, Ph.D. thesis, University of Pennsylvania, Philadelphia, 2001.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • A. A. Kirillov
    • 1
  1. 1.Department of MathematicsThe University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations