Time-Frequency/Time-Scale Reassignment

  • Eric Chassande-Mottin
  • Francois Auger
  • Patrick Flandrin
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter reviews the reassignment principle, which aims at “sharpening” time-frequency and time-scale representations in order to improve their readability.

The basic idea, which simply consists in moving the time-frequency contributions from the point where they are computed to a more appropriate one, is presented first for the simple cases of the spectrogram and scalogram and then extended to general classes of time-frequency and time-scale energy distributions.

We further consider how the reassignment idea can be implemented efficiently and how it actually operates. Cases (with both deterministic and random signals) where closed-form expressions can be obtained offer the opportunity to better understand how reassignment works. We also give a geometrical characterization of the transform of the time-frequency plane made by the reassignment.

Finally, with two examples (signal de-noising and detection) we illustrate how the reassignment can be useful in practical signal processing applications.

Keywords

Entropy Coherence Expense Auger thI2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Hlawatsch and G. E Boudreaux-Bartels, Linear and quadratic time-frequency signal representations. IEEE Signal Proc. Magazine, 21–67, 1992.Google Scholar
  2. [2]
    L. Cohen, Time-Frequency Analysis. Prentice-Hall, Englewoods Cliffs (NJ), 1995.Google Scholar
  3. [3]
    S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, New York (NY), 1998.MATHGoogle Scholar
  4. [4]
    P. Flandrin, Time-Frequency/Time-Scale Analysis. Academic Press, San Diego (CA), 1999.MATHGoogle Scholar
  5. [5]
    E. Chassande-Mottin, Méthodes de réallocation dans le plan temps fréquence pour l’analyse et le traitement de signaux non stationnaires. Thèse de Doctorat, Université de Cergy-Pontoise (France), 1998.Google Scholar
  6. [6]
    E Auger, P. Flandrin, P. Gonçalvès, and O. Lemoine, Time-Frequency Toolbox for MATLAB, Users’ Guide and Reference Guide. Available at http://www.iut-saint-nazaire.univnantes.fr/~vauger/tftb.html
  7. [7]
    K. Kodera, C. De Villedary, and R. Gendrin, A new method for the numerical analysis of nonstationary signals. Phys. Earth and Plan. Int., 12:142–150, 1976.Google Scholar
  8. [8]
    E Auger and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Proc., SP-43(5):1068–1089, 1995.CrossRefGoogle Scholar
  9. [9]
    O. Rioul and M. Vetterli, Wavelets and signal processing. IEEE Signal Proc. Magazine, 14–38, 1991.Google Scholar
  10. [10]
    E Hlawatsch and P. Flandrin, The interference structure of Wigner distributions and related time-frequency signal representations. In The Wigner Distribution: Theory and Applications in Signal Processing (W. Mecklenbräuker, F. Hlawatsch, eds.), 59–133, Elsevier, Amsterdam, 1998.Google Scholar
  11. [11]
    K. Kodera, R. Gendrin, and C. De Villedary, Analysis of time-varying signals with small BT values. IEEE Trans. on Acoust., Speech, and Signal Proc., ASSP-26(1):64–76, 1978.CrossRefGoogle Scholar
  12. [12]
    K. Kodera, Analyse numérique de signaux géophysiques non-stationnaires. Thèse de Doctorat, Université de Paris VI (France), 1976.Google Scholar
  13. [13]
    O. Rioul and P. Flandrin, Time-scale energy distributions: a general class extending wavelet transforms. IEEE Trans. on Signal Proc., SP-40(7):1746–1757, 1992.MATHCrossRefGoogle Scholar
  14. [14]
    A. Papandreou, F. Hlawatsch, and G. E Boudreaux-Bartels, The hyperbolic class of time-frequency representations—Part I: constant Q warping, the hyperbolic paradigm, properties and members. IEEE Trans. on Signal Proc., SP-41(12):3425–3444, 1993.MATHCrossRefGoogle Scholar
  15. [15]
    F. Hlawatsch, A. Papandreou-Suppapola, and G. F. Boudreaux-Bartels, The hyperbolic class of quadratic time-frequency distributions—Part II: subclasses, intersection with the affine and power classes, regularity and unitarity. IEEE Trans. on Signal Proc., SP-45(2):303–315, 1997.CrossRefGoogle Scholar
  16. [16]
    A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bartels, Power class time-frequency representations: interference geometry, smoothing and implementation. In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, 193–196, Paris (France), 1996.Google Scholar
  17. [17]
    L. J. Stankovic, A method for time-frequency signal analysis. IEEE Trans. on Signal Proc., SP-42(1):225–229, 1994.CrossRefGoogle Scholar
  18. [18]
    E. Auger and P. Flandrin, La reallocation: une méthode générale d’amélioration de la lisibilité des représentations temps-fréquence bilinéaires. In Proc. Journées GdR TdSI, Temps-Fréquence, Ondelettes et Multirésolution, 15.1–15, Lyon, 1994.Google Scholar
  19. [19]
    I. Djurovic and L.J. Stankovic, Time-frequency representation based on the reassigned S-method. Sig. Proc., 77(1):115–120, 1999.MATHCrossRefGoogle Scholar
  20. [20]
    R. J. McAulay and T. F. Quatieri, Speech analysis–synthesis based on a sinusoidal representation. IEEE Trans. on Acoust., Speech, and Signal Proc., ASSP-34(4):744754, 1986.Google Scholar
  21. [21]
    C. Berthomier, Sur une méthode d’analyse de signaux. Ann. Geophys., 31(2):239–252, 1975.Google Scholar
  22. [22]
    V. Gibiat, F. Wu, P. Perio, and S. Chantreuil, Analyse spectrale différentielle (A.S.D.). C. R. Acad. Sc. Paris, série II, 294:633–636, 1982.Google Scholar
  23. [23]
    N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, P. Tchamitchian, and B. Torrésani, Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans. on Info. Theory, IT-38(2):644–673, 1992.CrossRefGoogle Scholar
  24. [24]
    N. Delprat, Analyse temps fréquence de sons musicaux: exploration d’une nouvelle méthode d’extraction de données pertinentes pour un modèle de synthèse. Thèse de Doctorat, Université d’Aix-Marseille II (France), 1992.Google Scholar
  25. [25]
    P. Guillemain and R. Kronland-Martinet, Horizontal and vertical ridges associated to continuous wavelet transforms. In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, 63–66, Victoria (Canada), 1992.Google Scholar
  26. [26]
    D. Friedman, Instantaneous frequency distribution vs. time: an interpretation of the phase structure of speech. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Proc., 1121–1124, Tampa (FL), 1985.Google Scholar
  27. [27]
    S. Maes, The synchrosqueezed representation yields a new reading of the wavelet transform. In Proc. SPIE 95 on OE/Aerospace Sensing and Dual Use Photonics, 532–559, Orlando (FL), 1995.Google Scholar
  28. [28]
    C. Richard and R. Lengellé, Joint recursive implementation of time-frequency representations and their modified version by the reassignment method. Sig. Proc., 60(2):163–179, 1997.MATHGoogle Scholar
  29. [29]
    F. Auger and P. Flandrin, Improving the readability of the time-frequency and time-scale representations by the reassignment method. Technical Report LAN 93–05, Laboratoire d’Automatique de Nantes, Nantes (France), 1993.Google Scholar
  30. [30]
    S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. on Info. Theory, IT-38(2):617–643, 1992.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    P. Guillemain and R. Kronland-Martinet, Characterization of acoustic signals through continuous linear time-frequency representations. Proc. IEEE, 84(4):561–587, 1996.CrossRefGoogle Scholar
  32. [32]
    P. Gonçalvès, Représentations temps fréquence et temps-échelle — Synthèse et contributions. Thèse de Doctorat, Inst. National Polytechnique de Grenoble (France), 1993.Google Scholar
  33. [[33]
    J. R. Klauder, Path integrals for affine variables. In Functional Integration: Theory and Applications (J.-P. Antoine, E. Tirapegui, eds.), 101–119, Plenum Press, New York (NY), 1980.Google Scholar
  34. [34]
    E. Chassande-Mottin, F. Auger, and P. Flandrin, Statistiques des vecteurs de réallocation du spectrogramme. Technical Report 96–01, Laboratoire de Physique, ENS-Lyon (URA 1325 CNRS), Lyon (France), 1996.Google Scholar
  35. [35]
    E. Chassande-Mottin, F. Auger, and R Flandrin, On the statistics of spectrogram reassignment. Multidim. Syst. and Signal Proc., 9(4):355–362, 1998.MATHGoogle Scholar
  36. [36]
    B. Picinbono, On circularity. IEEE Trans. on Signal Proc, SP-42(12):3473–3482, 1994.CrossRefGoogle Scholar
  37. [37]
    M. Dechambre and J. Lavergnat, Statistical properties of the instantaneaous frequency for a noisy signal. Sig. Proc., 2:137–150, 1980.Google Scholar
  38. [38]
    E. Chassande-Mottin, I. Daubechies, F Auger, and R. Flandrin, Differential reassignment. IEEE Signal Proc. Lett., SPL-4(10):293–294, 1997.CrossRefGoogle Scholar
  39. [39]
    E. Chassande-Mottin, F Auger, I. Daubechies, and R. Flandrin, Partition du plan temps-fréquence et réallocation. In Proc. 1 6ème Colloque GRETSI, 1447–1450, Grenoble (France), 1997.Google Scholar
  40. [40]
    V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Comm. on Pure and Appl. Math., 14:187–214, 1961.MathSciNetMATHGoogle Scholar
  41. [41]
    E. Chassande-Mottin, E Auger, and R Flandrin, Supervised time-frequency reassignment. In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, 517–520, Paris (France), 1996.Google Scholar
  42. [42]
    M. Basseville, Distance measures for signal processing and pattern recognition. Sig. Proc. 18:349–369, 1989.MathSciNetGoogle Scholar
  43. [43]
    R. G. Baraniuk, P. Flandrin, and O. Michel, Information and complexity on the time-frequency plane. In Proc. 14ème Colloque GRETSI, 359–362, Juan-Les-Pins (France), 1993.Google Scholar
  44. [44]
    R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen, and O. Michel, Measuring time-frequency information content using the Rényi entropies. IEEE Trans. on Info. Theory, Vol. 47, No. 4, pp. 1391–1409.MathSciNetCrossRefGoogle Scholar
  45. [45]
    V. Pierson and N. Martin, Watershed segmentation of time-frequency images. In Proc. IEEE Workshop on Nonlinear Signal and Image Proc., 1003–1006, Halkidiki (Greece), 1995.Google Scholar
  46. [46]
    J. P. Benzecri, L’Analyse de Données. Tome 1: La Taxinomie. Dunod, Paris (France), 1973.Google Scholar
  47. [47]
    W. Kozek and E Hlawatsch, A comparative study of linear and nonlinear time-frequency filters. In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, 163–166, Victoria (Canada), 1992.Google Scholar
  48. [48]
    F Preparata and M. Shamos, Computational Geometry. An Introduction. Springer-Verlag, New York (NY), 1985.Google Scholar
  49. [49]
    K. S. Thorne. Gravitational radiation. In 300 Years of Gravitation (S. W. Hawking, W. Israel, eds.), 330–458, Cambridge Univ. Press, Cambridge (UK), 1987.Google Scholar
  50. [50]
    B. S. Sathyaprakash and D. V. Dhurandhar, Choice of filters for the detection of gravitational waves from coalescing binaries. Phys. Rev. D, 44(12):3819–3834, 1991.CrossRefGoogle Scholar
  51. [51]
    S. D. Mohanty and S. V. Dhurandhar, Hierarchical search strategy for the detection of gravitational waves from coalescing binaries. Phys. Rev. D, 54(12):7108–7128, 1996.CrossRefGoogle Scholar
  52. [52]
    J. Bertrand and R. Bertrand, A class of affine Wigner distributions with extended covariance properties. J. Math. Phys., 33(7):2515–2527, 1992.MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    E. Chassande-Mottin and R Flandrin, On the stationary phase approximation of chirp spectra. In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, 117–120, Pittsburgh (PA), 1998.Google Scholar
  54. [54]
    E. Chassande-Mottin and P. Flandrin, On the time-frequency detection of chirps. Appl. Comp. Harm. Anal., 6(9):252–281, 1999.MathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    J.-M. Innocent and B. Torrésani, A multiresolution strategy for detecting gravitational waves generated by binary coalescence. Technical Report CPT-96183379, CPT-CNRS, Marseille (France), 1996.Google Scholar
  56. [56]
    J.-M. Innocent and B. Torrésani, Wavelets and binary coalescences detection. Appl. Comp. Harm. Anal., 4(2):113–116, 1997.MATHCrossRefGoogle Scholar
  57. [57]
    A. D. Whalen, Detection of Signals in Noise. Academic Press, San Diego (CA), 1971.Google Scholar
  58. [58]
    E. Chassande-Mottin and P. Flandrin, On the time-frequency detection of chirps and its application to gravitational waves. In Proc. of the Second Workshop on Gray. Waves Data Analysis (M. Davier, P. Hello, eds.), 47–52, Editions Frontières, Gif-sur-Yvette (France), 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Eric Chassande-Mottin
  • Francois Auger
  • Patrick Flandrin

There are no affiliations available

Personalised recommendations