Skip to main content

Covariant Time-Frequency Analysis

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We present a theory of linear and bilinear/quadratic time-frequency (TF) representations that satisfy a covariance property with respect to “TF displacement operators” These operators cause TF displacements such as (possibly dispersive) TF shifts and dilations/compressions. Our covariance theory establishes a unified framework for important classes of linear TF representations (e.g., the short-time Fourier transform and continuous wavelet transform) as well as bilinear TF representations (e.g., Cohen’s class and the affine class). It yields a theoretical basis for TF analysis and allows the systematic construction of covariant TF representations.

The covariance principle is developed both in the group domain and in the TF domain Fundamental properties of the displacement function connecting these two domains and their far-reaching consequences are studied, and a method for constructing the displacement function is presented.

We also introduce important classes of operator families (modulation and warping operators, dual and affine operators), and we apply the results of the covariance theory to these operator classes. It is shown that for dual operator pairs the characteristic function method for constructing bilinear TF representations is equivalent to the covariance method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Flandrin Time-Frequency/Time-Scale Analysis. San Diego (CA): Academic Press, 1999.

    MATH  Google Scholar 

  2. L. Cohen Time-Frequency Analysis. Englewood Cliffs (NJ): Prentice-Hall, 1995.

    Google Scholar 

  3. F. Hlawatsch and G. F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representations IEEE Signal Processing Magazine vol. 9, pp. 21–67, April 1992.

    Article  Google Scholar 

  4. K. Gröchenig Foundations of Time-Frequency Analysis. Boston (MA): Birkhäuser, 2001.

    MATH  Google Scholar 

  5. I. Daubechies Ten Lectures on Wavelets. Philadelphia (PA): SIAM, 1992.

    Book  MATH  Google Scholar 

  6. Y. Meyer Wavelets. Philadelphia (PA): SIAM, 1993.

    Google Scholar 

  7. O. Rioul and M. Vetterli, Wavelets and signal processing IEEE Signal Processing Magazine vol. 1, pp. 14–38, Oct. 1991.

    Article  Google Scholar 

  8. A. Papandreou, F Hlawatsch, and G. F. Boudreaux-Bartels, The hyperbolic class of quadratic time-frequency representations—Part I: Constant-Q warping, the hyperbolic paradigm, properties, and members IEEE Trans. Signal Processing Special Issue on Wavelets and Signal Processing vol. 41, pp. 3425–3444, Dec. 1993.

    MATH  Google Scholar 

  9. F. Hlawatsch, A. Papandreou-Suppappola, and G. F. Boudreaux-Bartels, The power classes—Quadratic time-frequency representations with scale covariance and dispersive time-shift covariance IEEE Trans. Signal Processing vol. 47, pp. 3067–3083, Nov. 1999.

    Article  MATH  Google Scholar 

  10. R. G. Baraniuk and D. L. Jones, Unitary equivalence: A new twist on signal processing IEEE Trans. Signal Processing vol. 43, pp. 2269–2282, Oct. 1995.

    Article  Google Scholar 

  11. R. G. Baraniuk, Warped perspectives in time-frequency analysis in IEEE Int. Symp. Time-Frequency and Time-Scale Analysis (Philadelphia, PA), pp. 528–531, Oct. 1994.

    Google Scholar 

  12. R. G. Baraniuk, Covariant time-frequency representations through unitary equivalence IEEE Signal Processing Letters vol. 3, pp. 79–81, March 1996.

    Article  Google Scholar 

  13. F. Hlawatsch, Regularity and unitarity of bilinear time-frequency signal representations IEEE Trans. Inf. Theory vol. 38, pp. 82–94, Jan. 1992.

    Article  MATH  Google Scholar 

  14. E Hlawatsch, Duality and classification of bilinear time-frequency signal representations IEEE Trans. Signal Processing vol. 39, pp. 1564–1574, July 1991.

    Article  Google Scholar 

  15. J. Bertrand and P. Bertrand, Affine time-frequency distributions, in Time-Frequency Signal Analysis – Methods and Applications (B. Boashash, ed.), pp. 118–140, Melbourne: Longman Cheshire, 1992.

    Google Scholar 

  16. O. Rioul and P. Flandrin, Time-scale energy distributions: A general class extending wavelet transforms IEEE Trans. Signal Processing vol. 40, pp. 1746–1757, July 1992.

    Article  MATH  Google Scholar 

  17. J. Bertrand and P. Bertrand, A class of affine Wigner functions with extended covariance properties J. Math. Phys. vol. 33, pp. 2515–2527, July 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Flandrin and P. Gonçalvès, Geometry of affine time-frequency distributions Applied and Computational Harmonic Analysis, vol. 3, pp. 10–39, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Hlawatsch, A. Papandreou, and G. R Boudreaux-Bartels, Regularity and unitarity of affine and hyperbolic time-frequency representations, in Proc. IEEE ICASSP-93 (Minneapolis, MN), pp. 245–248, April 1993.

    Google Scholar 

  20. F. Hlawatsch, A. Papandreou-Suppappola, and G. F. Boudreaux-Bartels, The hyperbolic class of quadratic time-frequency representations—Part II: Subclasses, intersection with the affine and power classes, regularity, and unitarity IEEE Trans. Signal Processing vol. 45, pp. 303–315, Feb. 1997.

    Article  Google Scholar 

  21. A. Papandreou-Suppappola, F. Hlawatsch, and G. F. Boudreaux-Bartels, Quadratic time-frequency representations with scale covariance and generalized time-shift covariance: A unified framework for the affine, hyperbolic, and power classes Digital Signal Processing —A Review Journal vol. 8, pp. 3–48, Jan. 1998.

    Article  Google Scholar 

  22. A. Papandreou-Suppappola, F. Hlawatsch, and G. F. Boudreaux-Bartels, Power class time-frequency representations: Interference geometry, smoothing, and implementation, in Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis (Paris, France), pp. 193–196, June 1996.

    Google Scholar 

  23. A. Papandreou-Suppappola and G. F. Boudreaux-Bartels, The exponential class and generalized time-shift covariant quadratic time-frequency representations, in Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis, (Paris, France), pp. 429–432, June 1996.

    Google Scholar 

  24. A. Papandreou-Suppappola, R. L. Murray, B.-G. Iem, and G. F. Boudreaux-Bartels, Group delay shift covariant quadratic time-frequency representations IEEE Trans. Signal Processing vol. 49, pp. 2549–2564, Nov. 2001.

    Article  Google Scholar 

  25. F. Hlawatsch and H. Bölcskei, Unified theory of displacement-covariant time-frequency analysis, in Proc. IEEE Int. Sympos. Time-Frequency Time-Scale Analysis, (Philadelphia, PA), pp. 524–527, Oct. 1994.

    Google Scholar 

  26. F. Hlawatsch and H. Bölcskei, Displacement-covariant time-frequency energy distributions, in Proc. IEEE ICASSP-95 (Detroit, MI), pp. 1025–1028, May 1995.

    Google Scholar 

  27. F. Hlawatsch, Covariant time-frequency analysis: A unifying framework, in Proc. IEEE UK Sympos. Applications of Time-Frequency and Time-Scale Methods (Univ. of Warwick, Coventry, UK), pp. 110–117, Aug. 1995.

    Google Scholar 

  28. F. Hlawatsch and T. Twaroch, Covariant (a ß) time-frequency, and (a b) representations, in Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis (Paris, France), pp. 437–440, June 1996.

    Google Scholar 

  29. A. M. Sayeed and D. L. Jones, Integral transforms covariant to unitary operators and their implications for joint signal representations IEEE Trans. Signal Processing vol. 44, pp. 1365–1377, June 1996.

    Article  Google Scholar 

  30. R Hlawatsch and H. Bölcskei, Covariant time-frequency distributions based on conjugate operators IEEE Signal Processing Letters vol. 3, pp. 44–46, Feb. 1996.

    Article  Google Scholar 

  31. A. M. Sayeed and D. L. Jones, A simple covariance-based characterization of joint signal representations of arbitrary variables, in Proc. IEEE-SP Ina. Sympos. Time-Frequency Time-Scale Analysis (Paris, France), pp. 433–436, June 1996.

    Google Scholar 

  32. A. M. Sayeed and D. L. Jones, A canonical covariance-based method for generalized joint signal representations IEEE Signal Processing Letters vol. 3, pp. 121–123, April 1996.

    Article  Google Scholar 

  33. T. Twaroch and F. Hlawatsch, Modulation and warping operators in joint signal analysis in Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis, ( Pittsburgh, PA), pp. 9–12, Oct. 1998.

    Google Scholar 

  34. ] R. G. Baraniuk, Beyond time-frequency analysis: Energy densities in one and many dimensions IEEE Trans. Signal Processing vol. 46, pp. 2305–2314, Sept. 1998.

    MATH  Google Scholar 

  35. R. G. Baraniuk, Marginals vs. covariance in joint distribution theory, in Proc. IEEE ICASSP-95, (Detroit, MI), pp. 1021–1024, May 1995.

    Google Scholar 

  36. W. Rudin Fourier Analysis on Groups. New York: Interscience, 1967.

    Google Scholar 

  37. E. Hewitt and K. A. Ross Abstract Harmonic Analysis I. Berlin, New York: Springer-Verlag, 1979.

    Google Scholar 

  38. J. M. G. Fell and R. S. Doran Representations of *-Algebras Locally Compact Groups and Banach *-Algebraic Bundles. Boston (MA): Academic Press, 1988.

    Google Scholar 

  39. M. A. Naimark and A. I. Stern Theory of Group Representations. New York: Springer, 1982.

    Book  MATH  Google Scholar 

  40. P. J. Higgins An Introduction to Topological Groups. Cambridge (UK): Cambridge University Press, 1974.

    Google Scholar 

  41. L. S. Pontryagin Topologische Gruppen. Leipzig: Teubner, 1957.

    MATH  Google Scholar 

  42. V. Bargmann, On unitary ray representations of continuous groups Annals of Mathematics vol. 59, pp. 1–46, Jan. 1954.

    Article  MathSciNet  MATH  Google Scholar 

  43. O. Christensen, Atomic decomposition via projective group representations Rocky Mountain J. Math vol. 26, no. 4, pp. 1289–1312, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  44. I. M. Gelfand and G. E. Schilow Verallgemeinerte Funktionen (Distributionen). Berlin: VEB, 1960.

    MATH  Google Scholar 

  45. K. Maurin General Eigenfunction Expansions and Unitary Representations of Topological Groups. Warszawa: PWN-Polish Scientific Publishers, 1968.

    MATH  Google Scholar 

  46. G. B. Folland Harmonic Analysis in Phase Space, vol. 122 of Annals of Mathematics Studies. Princeton (NJ): Princeton University Press, 1989.

    Google Scholar 

  47. A. Berthon, Représentations et changements d’horloge, in Proc. Workshop Time-Frequency, Wavelets and Multiresolution: Theory, Models, and Applications, (Lyon, France), pp. 191–194, March 1994.

    Google Scholar 

  48. J. Aczel Vorlesungen über Funktionalgleichungen und ihre Anwendungen. Basel (Switzerland) : Birkhäuser, 1961.

    Google Scholar 

  49. T. Twaroch Signal Representations and Group Theory. Ph.D. thesis, Vienna University of Technology, 1999.

    Google Scholar 

  50. M. H. Stone, Linear transformations in Hilbert space III Proc. Nat. Acad. USA vol. 16, pp. 172–175, 1930.

    Article  MATH  Google Scholar 

  51. J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren Math. Annalen vol. 104, pp. 570–578, 1931.

    Article  Google Scholar 

  52. G. W. Mackey, A theorem of Stone and von Neumann, Duke Math. J., vol. 16, pp. 313–326, 1949.

    Google Scholar 

  53. A. A. Kirillov Elements of the Theory of Representations. Berlin, New York: Springer, 1976.

    Book  Google Scholar 

  54. R. S. Shenoy and T. W. Parks, Wide-band ambiguity functions and affine Wigner distributions Signal Processing vol. 41, no. 3, pp. 339–363, 1995.

    Article  MATH  Google Scholar 

  55. D. Montgomery and L. Zippin Topological Transformation Groups. New York: Inter-science, 1965.

    Google Scholar 

  56. R. G. Shenoy Group Representations and Optimal Recovery in Signal Modeling. Ph.D. thesis, Cornell University, 1991.

    Google Scholar 

  57. L. Cohen, A general approach for obtaining joint representations in signal analysis—Part I: Characteristic function operator method IEEE Trans. Signal Processing vol. 44, pp. 1080–1090, May 1996.

    Article  Google Scholar 

  58. A. M. Sayeed and D. L. Jones, Equivalence of generalized joint signal representations of arbitrary variables IEEE Trans. Signal Processing vol. 44, pp. 2959–2970, Dec. 1996.

    Article  Google Scholar 

  59. A. M. Sayeed, On the equivalence of the operator and kernel method for joint distributions of arbitrary variables IEEE Trans. Signal Processing vol. 45, pp. 1067–1069, April 1997.

    Article  Google Scholar 

  60. F. Hlawatsch and T. Twaroch, Extending the characteristic function method for joint a-b and time-frequency analysis, in Proc. IEEE ICASSP-97, vol. 3, (Munich, Germany), pp. 2049–2052, April 1997.

    Google Scholar 

  61. J. C. O’Neill and W. J. Williams, Shift-covariant time-frequency distributions of discrete signals IEEE Trans. Signal Processing vol. 47, pp. 133–146, Jan. 1999.

    Article  Google Scholar 

  62. M. S. Richman, T. W. Parks, and R. G. Shenoy, Discrete-time, discrete-frequency time-frequency analysis IEEE Trans. Signal Processing vol. 46, pp. 1517–1527, June 1998.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hlawatsch, F., Tauböck, G., Twaroch, T. (2003). Covariant Time-Frequency Analysis. In: Debnath, L. (eds) Wavelets and Signal Processing. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0025-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0025-3_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6578-8

  • Online ISBN: 978-1-4612-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics