Skip to main content

Wavelets for Statistical Estimation and Detection

  • Chapter
Wavelets and Signal Processing

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 855 Accesses

Abstract

In this chapter, we discuss two important statistical applications of wavelets: (a) signal estimation and (b) signal detection. Several popular wavelet-based signal estimation/de-noising schemes are reviewed, followed by the introduction of a new signal estimator that attempts to estimate and preserve some moments of the underlying original signal. A relationship between signal estimation and data compression is also discussed. Analytical and experimental results are presented to explain the performance of these signal estimation schemes.

The second part of this chapter deals with hypothesis testing-based signal detection. Wavelet decomposition level-dependent binary hypothesis tests are first presented, followed by global detection procedures that combine these decisions to obtain the final decision. Likelihood ratio-based statistical detectors are discussed toward this goal. The combinatorial explosion of the global detector design results in the investigation of two specific global detection fusion rules: OR and AND. Some mathematical approximations are exploited that aid in trading off complexity for the global detector performance. Theorems and their proofs relating to this issue are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Daubechies, Ten Lectures on Wavelets SIAM CBMS-NSF Regional Conference Series in Applied Mathematics 1992.

    Google Scholar 

  2. S. G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation IEEE Trans. on PAMI vol. 11, no. 7, July 1989, pp. 674–693.

    Article  MATH  Google Scholar 

  3. C. S. Burrus, R. A. Gopinath, and H. Guo Introduction to wavelets and wavelet transforms: a primer Englewood Cliffs, NJ: Prentice-Hall, 1998.

    Google Scholar 

  4. D. L. Donoho, Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data Proc. Symposia Appl. Math. vol. 47, 1993, pp. 173–205.

    MathSciNet  Google Scholar 

  5. D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation via wavelet shrinkage Biometrika vol. 81, 1994, pp. 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. L. Donoho and I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage J. American Stat. Assoc. vol. 90, 1995, pp. 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. L. Donoho and I. M. Johnstone, Minimax estimation via wavelet shrinkage, Available on-line at http://www-stat.stanford.edu/~vdonoho/Reports/index.html

  8. N. S. Jayant and P. Noll Digital Coding of Waveforms Principles and Applications to Speech and Video Englewood Cliffs, NJ: Prentice-Hall, 1984.

    Google Scholar 

  9. Y. Wu and S. Tai, Efficient BTC image compression technique IEEE Trans. on Consumer Electronics vol. 44, May 1998, pp. 317–324.

    Article  Google Scholar 

  10. E. J. Delp and O. R. Mitchell, Image compression using block truncation codingIEEE Trans. on Communicationsvol. 27, Sept. 1979, pp. 1335–1342.

    Article  Google Scholar 

  11. T. B. Nguyen and B. J. Oommen, Moment-preserving piecewise linear approximations of signals and systems IEEE Trans. on Pattern Analysis and Machine Intelligence vol. 19, Jan. 1997, pp. 84–91.

    Article  Google Scholar 

  12. S. G. Chang, B. Yu, and M. Vetterli, Image denoising via lossy compression and wavelet thresholding Proc. of International Conf on Image Processing vol. 1, 1997, pp. 604–607.

    Google Scholar 

  13. M. Hansen and B. Yu, Assessing MDL in wavelet denoising and compression Information Theory and Networking Workshop 1999, p. 34.

    Google Scholar 

  14. G. Chang, B. Yu, and M. Vetterli, Bridging compression to wavelet thresholding as a de-noising method,“ Proceedings of 1997 Conference on Information Sciences and Systems Baltimore, MD, 1997.

    Google Scholar 

  15. S.M.Berman Sojourns and Extremes of Stochastic Processes Wadsworth, Reading, MA, 1989.

    Google Scholar 

  16. C. Stein, Estimation of the mean of a multivariate normal distribution Ann. Statistics vol. 9, 1981, pp. 1135–1151.

    Article  MATH  Google Scholar 

  17. A. K. Jain Fundamentals of digital image processing Englewood Cliffs, NJ: Prentice-Hall, 1989

    Google Scholar 

  18. J. A. Bucklew and N. C. Gallagher, A note on optimum quantization IEEE Trans. on Information Theory vol. 24, May 1979, pp. 365–366.

    Article  MathSciNet  Google Scholar 

  19. P. Billingsley Probability and Measure, New York: John Wiley, 1979.

    MATH  Google Scholar 

  20. S. Mallat and S. Zhong, Characterization of signals from multiscale edges IEEE Trans. Patt. Recog. and Mach. Intell. vol. 14, July 1992, pp. 710–732.

    Article  Google Scholar 

  21. E. J. Delp and O. R. Mitchell, Moment preserving quantization IEEE Trans. on Communications vol. 39, no. 11, Nov. 1991, pp. 1549–1558.

    Article  Google Scholar 

  22. G. Szego Orthogonal Polynomials vol. 23, American Mathematical Society, Providence, RI, 1975.

    Google Scholar 

  23. D. L. Donoho, De-noising by soft-thresholding IEEE Trans. on Information Theory vol. 41, no. 3, May 1995, pp. 613–627.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. A. DeVore and B. J. Lucier, Fast wavelet techniques for near optimal processing IEEE Military Communications Conf 1992, pp. 48.3.1–48.3.7.

    MathSciNet  Google Scholar 

  25. Source: Dr. Adrain Maudsley, MRS Unit, VA Medical Center, San Francisco, CA.

    Google Scholar 

  26. MATLAB software package:http://www-stat.stanford.edurwavelab/

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chandramouli, R., Ramachandran, K.M. (2003). Wavelets for Statistical Estimation and Detection. In: Debnath, L. (eds) Wavelets and Signal Processing. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0025-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0025-3_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6578-8

  • Online ISBN: 978-1-4612-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics