Skip to main content

Robust Stabilization of Chaos via Delayed Feedback Control

  • Chapter
  • 383 Accesses

Part of the book series: Trends in Mathematics ((TM))

Abstract

Delayed feedback control (DFC) is a useful method of stabilizing unstable fixed points of chaotic systems without their exact information. In this paper, we present a new recursive method for DFC, which enables us to easily design robust DFC. Since this recursive DFC is essentially dynamic feedback, it can overcome the so-called odd number limitation. Hence, it can robustly stabilize almost all unstable fixed points of chaotic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Barmish, “Necessary and sufficient condition for quadratic stabilizability of an uncertain linear system,”J. Optimiz. Theory Appl.vol. 46, no. 4, pp. 399–408, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bielawski, D. Derozier, and P. Glorieux, “Experimental characterization of unstable periodic orbits by controlling chaos,”Physical Review Avol. 47, no. 2, pp. 2493–2495, 1993.

    Google Scholar 

  3. G. Chen and X. Yu, “On time-delayed feedback control of chaotic systems,” IEEE Trans. Circuits and Systems 1, vol. 46, no. 6, pp. 767–772, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Hino, S. Yamamoto, and T. Ushio, “Stabilization of unstable periodic orbits of chaotic discrete-time systems using prediction-based feedback control” in Proc. AFSS 20002000, pp. 347–352.

    Google Scholar 

  5. W. Just, T. Bernard, M. Osthermer, E. Reibold, and H. Benner, “Mechanism of time-delayed feedback control,”Phys. Rev. Lett.vol. 78, no. 2, pp. 203–206, 1997.

    Article  Google Scholar 

  6. W. Justet al.“Limits of time-delayed feedback control,”Physics Letters A vol.254, pp. 158–164, 1999.

    Google Scholar 

  7. P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust stabilization of uncertain linear systems: Quadratic stabilizability andH control theory,“IEEE Trans. Automat. Control, vol. AC-35, no. 3, pp. 356–361, 1990.

    Article  MathSciNet  Google Scholar 

  8. H. Kimura, “Pole-assignment by gain output feedback,”IEEE Trans. Automat. Controlvol. AC-20, pp. 509–516, 1975.

    Article  MATH  Google Scholar 

  9. H. Kimura, “Pole-assignment by output feedback: A long-standing open question,” inProc. 33rd IEEE Conf. Decision and Control1994, pp. 2101–2105.

    Google Scholar 

  10. K. Konishi, M. Ishii, and H. Kokame, “Stability of extended delayed feedback control for discrete-time chaotic systems,”IEEE Trans. Circuits and Systems I vol.46, no. 10, pp. 1285–1288, 1999.

    Article  MATH  Google Scholar 

  11. K. Konishi and H. Kokame, “Observer-based delayed-feedback control for discrete-time chaotic systems,”Physics Letters A, vol.248,pp.359–368, 1998.

    Article  Google Scholar 

  12. H. Nakajima, “On analytical properties of delayed feedback control of chaos,”Physics Letters A vol.232, pp. 207–210, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Nakajima“Ageneralization of the extended delayed feedback control for chaotic systems,” in Proc. of COC2000, vol. 2, 2000, pp. 209–212.

    Google Scholar 

  14. H. Nakajima and Y. Ueda, “Half-period delayed feedback control for dynamical systems with symmetries,”Physical Review Evol. 58, no. 2, pp. 1757–1763, 1998.

    Article  Google Scholar 

  15. E. Ott, C. Grebogi, and J.A.Yorke, “Controlling chaos,”Phys. Rev. Lett.,vol.64, no. 11, pp. 1196–1199, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. R. Petersen“Astabilization algorithm for a class of uncertain linear systems,” Systems and Control Letters, vol.8, pp. 351–357, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. R. Petersen and C. V. Hollot“ARiccati equation approach to the stabilization of uncertain linear systems,” Automatica vol.22, no. 4, pp. 397–411, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Pyragas, “Continuous control of chaos by self-controlling feedback,”Physics Letters A vol.170, pp. 421–428, 1992.

    Article  Google Scholar 

  19. H. G. Schuster and M. B. Stemmler, “Control of chaos by oscillating feedback,”Physical Review Evol. 56, no. 6, pp. 6410–6417, 1997.

    Article  Google Scholar 

  20. R. E. Skelton, T. Iwasaki, and K. GrigoriadisA Unified Algebraic Approach to Linear Control Design.London: Taylor & Francis, 1998.

    Google Scholar 

  21. J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, “Stabilizing unstable periodic orbits in fast dynamical systems,”Physical Review Evol. 50, pp. 3245–3248, 1994.

    Article  Google Scholar 

  22. T. Ushio, “Chaotic synchronization and controlling chaos based on contraction mappings,”Physics Letters Avol. 198, pp. 14–22, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Ushio, “Limitation of delayed feedback control in non-linear discrete-time systems,”IEEE Trans. Circuits and Systems Ivol. 43, no. 9, pp. 815–816, 1996.

    Article  Google Scholar 

  24. T. Ushio and S. Yamamoto, “Delayed feedback control with nonlinear estimation in chaotic discrete-time systems,”Physics Letters Avol. 247, pp. 112–118, 1998.

    Article  Google Scholar 

  25. T. Ushio and S. Yamamoto, “Prediction-based control of chaos,”Physics Letters Avol. 264, pp. 30–35, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Xu and S. R. Bishop, “Self-locating control of chaotic systems using Newton algorithm,”Physics Letters Avol. 210, pp. 273–278, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Yamamoto, T, Hino, and T. Ushio, “Dynamic delayed feedback controllers for chaotic discrete-time systems,”IEEE Trans. Circuits and Systems Ivol. 48, no. 6, pp. 785–789, 2001.

    Article  MATH  Google Scholar 

  28. X. Yu, Y. Tian, and G. Chen, “Time delayed feedback control of chaos,” inControlling Chaos and Bifurcations in Engineering SystemsG. Chen Ed.CRC, Chapter 12, pp. 255–274, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, S., Ushio, T. (2003). Robust Stabilization of Chaos via Delayed Feedback Control. In: Hashimoto, K., Oishi, Y., Yamamoto, Y. (eds) Control and Modeling of Complex Systems. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0023-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0023-9_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6577-1

  • Online ISBN: 978-1-4612-0023-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics