Skip to main content

A Convex Optimization Approach to Generalized Moment Problems

  • Chapter
Control and Modeling of Complex Systems

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this paper we present a universal solution to the generalized moment problem, with a nonclassical complexity constraint. We show that this solution can be obtained by minimizing a strictly convex nonlinear functional. This optimization problem is derived in two different ways. We first derive this intrinsically, in a geometric way, by path integration of a one-form which defines the generalized moment problem. It is observed that this one-form is closed and defined on a convex set, and thus exact with, perhaps surprisingly, a strictly convex primitive function. We also derive this convex functional as the dual problem of a problem to maximize a cross entropy functional. In particular, these approaches give a constructive parameterization of all solutions to the Nevanlinna-Pick interpolation problem, with possible higher-order interpolation at certain points in the complex plane, with a degree constraint as well as all solutions to the rational covariance extension problem — two areas which have been advanced by the work of Hidenori Kimura. Illustrations of these results in system identification and probability are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing, 1965.

    MATH  Google Scholar 

  2. N. I. Ahiezer and M. KreinSome Questions in the Theory of MomentsProvidence, Rhode Island: American Mathematical Society, 1962.

    Google Scholar 

  3. C. I. Byrnes and A. Lindquist, “On the geometry of the KimuraGeorgiou parameterization of modelling filter,”Int. J. Controlvol. 50, pp. 99–105, 1989.

    Article  MathSciNet  Google Scholar 

  4. C. I. Byrnes, A. Lindquist, and T. McGregor, “Predictability and unpredictability in Kalman filtering,”IEEE Trans. Automatic Controlvol. 36, pp. 563–579, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. I. Byrnes, A. Lindquist, and Y. Zhou, “On the nonlinear dynamics of fast filtering algorithms,”SIAM J. Control and Optimizationvol. 32, pp. 744–789, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. I. Byrnes, A. Lindquist, S. V. Gusev and A. S. Matveev, “A complete parametrization of all positive rational extensions of a covariance sequence,”IEEE Trans.Automatic Controlvol. AC-40, pp. 1841–1857, 1995.

    Article  MathSciNet  Google Scholar 

  7. C. I. Byrnes, S. V. Gusev, and A. Lindquist, “A convex optimization approach to the rational covariance extension problem,”SIAM J. Control and Optimizationvol. 37, pp. 211–229, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. I. Byrnes and A. Lindquist, “On the duality between filtering and Nevanlinna¡ªPick interpolation,”SIAM J. Control and Optimizationvol. 39, pp. 757–775, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. I. Byrnes, T. T. Georgiou and A. Lindquist, “A generalized entropy criterion for Nevanlinna¡ªPick interpolation with degree constraint,”IEEE Trans. Automatic Controlvol. AC-46, pp. 822–839, 2001.

    Article  MathSciNet  Google Scholar 

  10. C. I. Byrnes, T. T. Georgiou, and A. Lindquist, “A new approach to spectral estimation: A tunable high-resolution spectral estimator,”IEEE Trans. Signal Processingvol. SP-49, pp. 3189–3205, Nov. 2000.

    Article  MathSciNet  Google Scholar 

  11. C. I. Byrnes, T. T. Georgiou, and A. Lindquist, “Generalized interpolation inH¡ã¡ã:Solutions of bounded complexity,” preprint.

    Google Scholar 

  12. C. I. Byrnes, T. T. Georgiou, and A. Lindquist, forthcoming paper.

    Google Scholar 

  13. C. I. Byrnes, P. Enqvist, and A. Lindquist, “Cepstral coefficients, covariance lags and pole-zero models for finite data strings,”IEEE Trans. Signal Processingvol.SP-50, pp. 677–693, 2001.

    MathSciNet  Google Scholar 

  14. C. I. Byrnes, P. Enqvist, and A. Lindquist, “Identifiability and wellposedness of shaping-filter parameterizations: A global analysis approach,”SIAM J. Control and Optimization vol.41, pp. 23–59, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. I. Byrnes, S. V. Gusev, and A. Lindquist, “From finite covariance windows to modeling filters: A convex optimization approach,”SIAM Review vol.43, pp. 645–675, Dec. 2001.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. I. Byrnes and A. Lindquist, “Interior point solutions of variational problems and global inverse function theorems,” submitted for publication.

    Google Scholar 

  17. I. Csiszár“I-divergence geometry of probability distributions and minimization problems,”Ann. Probab.vol. 3, pp. 146–158, 1975.

    Article  MATH  Google Scholar 

  18. I. Csiszár and F. Matús, “Information projections revisited,” preprint, 2001.

    Google Scholar 

  19. Ph. Delsarte, Y. Genin, and Y. Kamp, “On the role of the NevanlinnaPick problem in circuits and system theory,”Circuit Theory and Applications vol.9, pp. 177–187, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ph. Delsarte, Y. Genin, Y. Kamp, and P. van Dooren, “Speech modelling and the trigonometric moment problem,”Philips J. Res. vol.37, pp. 277–292, 1982.

    MathSciNet  MATH  Google Scholar 

  21. J.C. Doyle, B. A. Frances, and A. R. TannenbaumFeedback Control Theory.New York: Macmillan Publ. Co., 1992.

    Google Scholar 

  22. P. Enqvist, “Spectral estimation by geometric, topological and optimization Methods,” Ph.D. thesis, Optimization and Systems Theory, KTH, Stockholm, Sweden, 2001.

    Google Scholar 

  23. T. T. Georgiou, “Realization of power spectra from partial covariance sequences,” IEEE Trans. Acoustics, Speech, and Signal Processingvol.ASSP-35, pp. 438–449, 1987.

    Article  Google Scholar 

  24. T. T. Georgiou, “A topological approach to Nevanlinna¡ªPick interpolation,”SIAM J. Math. Analysis vol.18, pp. 1248–1260, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. T. Georgiou, “The interpolation problem with a degree constraint,”IEEE Trans. Automatic Control vol.44, no. 3, pp. 631–635, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  26. I.J.Good, “Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables,”Annals Math. Stat.vol. 34, pp. 911–934, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  27. U. Grenander and G. Szegö, “Toeplitz forms and their applications,” Univ. California Press, 1958.

    Google Scholar 

  28. J. W. Helton, “Non-Euclidean analysis and electronics,”Bull. Amer. Math. Soc.vol. 7, pp. 1–64, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. S. C. Heuberger, T. J. de Hoog, P. M. J. Van den Hof, Z. Szab¨®, and J. Bokar, “Minimal partial realization from orthonormal basis function expansions,” inProc. 40th IEEE Conf Decision and ControlOrlando, Florida, USA, December 2001, pp. 3673–3678.

    Google Scholar 

  30. R. E. Kalman, “Realization of covariance sequences,” inProc. Toeplitz Memorial Conference (1981)Tel Aviv, Israel, 1981.

    Google Scholar 

  31. H. Kimura, “Positive partial realization of covariance sequences,” inModelling Identification and Robust ControlC. I. Byrnes and A. Lindquist, Eds. North-Holland, 1987, pp. 499–513.

    Google Scholar 

  32. H. Kimura, “Robust stabilizability for a class of transfer functions,” IEEE Trans. Automatic Control, vol. AC-29, pp. 788–793, 1984.

    Article  Google Scholar 

  33. H. Kimura, “State space approach to the classical interpolation problem and its applications,” inThree Decades of Mathematical System TheoryLecture Notes in Control and Inform. Sci., vol. 135, Berlin: Springer, 1989, pp. 243–275.

    Google Scholar 

  34. H. Kimura and H. Iwase, “On directional interpolation inH¡ã¡ã inLinear circuits systems and signal processing: theory and application(Phoenix, AZ, 1987), Amsterdam: North-Holland, 1988, pp. 551–560.

    Google Scholar 

  35. H. Kimura, “Conjugation, interpolation and model-matching inH¡ã¡ã Int. J. Controlvol. 49, pp. 269–307, 1989.

    MATH  Google Scholar 

  36. H. Kimura, “Directional interpolation in the state space,”Systems Control Lett.vol. 10, pp. 317–324, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Kimura, “Directional interpolation approach to H¡ã¡ã-optimization and robust stabilization,”IEEE Trans. Automatic Controlvol. AC-32, pp. 1085–1093, 1987.

    Article  Google Scholar 

  38. M. G. Krein and A. A. NudelmanThe Markov Moment Problem and Extremal ProblemsProvidence, Rhode Island: American Mathematical Society, 1977.

    Google Scholar 

  39. S. KullbackInformation Theory and StatisticsNew York John Wiley, 1959.

    MATH  Google Scholar 

  40. A. Lindquist, “A new algorithm for optimal filtering of discrete-time stationary processes,”SIAM J. Control, vol. 12 pp.736–746, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Lindquist, “Some reduced-order non-Riccati equations for linear least-squares estimation: the stationary, single-output case,”Int. J. Controlvol. 24, pp. 821–842, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Nagamune and A. Lindquist, “Sensitivity shaping in feedback control and analytic interpolation theory,” inOptimal Control and Partial Differential Equations J.L. Medaldi et al. Eds. Amsterdam: IOS Press, 2001, pp. 404–413.

    Google Scholar 

  43. R. Nagamune, “A robust solver using a continuation method for Nevanlinna¡ªPick interpolation with degree constraint,”IEEE Trans. Automatic Controlto appear.

    Google Scholar 

  44. R. Nagamune, “Closed-loop shaping based on Nevanlinna¡ªPick interpolation with a degree bound,” submitted toIEEE Trans. Automatic Control.

    Google Scholar 

  45. R. Nagamune, “Robust control with complexity constraint,” Ph.D. thesis, Optimization and Systems Theory, Royal Institute of Technology, Stockholm, Sweden, 2002.

    Google Scholar 

  46. A. RenyiProbability Theory.North-Holland, 1970.

    Google Scholar 

  47. Z. Szab¨®, P. Heuberger, J. Bokar, and P. Van den Hof, “Extended Ho¡ªKalman algorithm for systems represented in generalized orthonormal bases,”Automatica vol.36, pp. 1809–1818, 2000.

    Google Scholar 

  48. W. RudinReal and Complex Analysis.McGraw-Hill, 1966.

    MATH  Google Scholar 

  49. J. A. Shohat and J. D. TamarkinThe Problem of MomentsMathematical Surveys I. New York: American Mathematical Society, 1943.

    Google Scholar 

  50. A. Tannenbaum, “Feedback stabilization of linear dynamical plants with uncertainty in the gain factor,”Int. J. Control vol.32, pp. 1–16, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Wahlberg “Systems identification using Laguerre models,” IEEE Trans. Automatic Controlvol.AC-36, pp. 551–562, 1991.

    Article  MathSciNet  Google Scholar 

  52. B. Wahlberg “System identification using Kautz models,” IEEE Trans. Automatic Controlvol.AC-39, pp. 1276–1282, 1994.

    Article  MathSciNet  Google Scholar 

  53. K. ZhouEssentials of Robust Control.Prentice-Hall, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Byrnes, C.I., Lindquist, A. (2003). A Convex Optimization Approach to Generalized Moment Problems. In: Hashimoto, K., Oishi, Y., Yamamoto, Y. (eds) Control and Modeling of Complex Systems. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0023-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0023-9_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6577-1

  • Online ISBN: 978-1-4612-0023-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics