Advertisement

Systèmes Uniformément Diagonalisables, Dimension Réduite et Symétrie II

  • Jean Vaillant
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 52)

Abstract

Let there be a strong hyperbolic matrix. We state the following result. If the reduced dimension is more than a specified integer, there is a linear basis in which the matrix is symmetric.

Keywords

Nous Avons Peut Supposer Sont Nuls Real Constant Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tatsuo NishitaniSymmetrization of hyperbolic systems with real constant coefficientsAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)21(1994), no. 1, 97–130.MathSciNetMATHGoogle Scholar
  2. 2.
    Tatsuo Nishitani and Jean VaillantSmoothly symmetrisable systems and the reduced dimensionTsukuba J. Math.25(2001), no. 1, 165–177.MathSciNetMATHGoogle Scholar
  3. 3.
    Yorimasa OshimeCanonical forms of3 x 3strongly hyperbolic systems with real constant coefficientsJ. Math. Kyoto Univ.31(1991), no. 4, 937–982.MathSciNetMATHGoogle Scholar
  4. 4.
    Gilbert StrangOn strong hyperbolicityJ. Math. Kyoto Univ.6(1967), 397–417.MathSciNetMATHGoogle Scholar
  5. 5.
    Jean VaillantSymétrisabilité des matrices localisées d’une matrice fortement hyperbolique en un point multipleAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)5(1978), no. 2, 405–427.MathSciNetMATHGoogle Scholar
  6. 6.
    Jean VaillantSystèmes fortement hyperboliques4 x 4dimension réduite et symétrieAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)29(2000), no. 4, 839–890.MathSciNetMATHGoogle Scholar
  7. 7.
    Jean VaillantSymétrie des opérateurs fortement hyperboliques4 x 4ayant un point triple caractéristique dans R 3Ann. Univ. Ferrara Sez.VII(N.S.)45(1999), no. suppl., 339–363 (2000), Workshop on Partial Differential Equations (Ferrara, 1999).Google Scholar
  8. 8.
    Jean VaillantSystèmes uniformément diagonalisables dimension réduite et symétrie IBull. Soc. Roy. Sci. Liège, (à la mémoire de P. Laubin)70(2001), no. 4–6, 407–433.MathSciNetGoogle Scholar
  9. 9.
    Jean VaillantUniformly diagonalizable real systems reduced dimension and symetryInternational Congress of the International Society for Analysis, its Applications and Computation (ISAAC), held at the University of Berlin, Germany, 2001(à paraître). Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jean Vaillant
    • 1
  1. 1.Mathématiques - B.C. 172Université Paris VIParis Cedex 05France

Personalised recommendations