Skip to main content

Conjunctiva and Limbus

  • Chapter
  • First Online:
In Vivo Confocal Microscopy in Eye Disease
  • 313 Accesses

Abstract

IVCM can be used to non-invasively depict details of conjunctival tissue at cellular and subcellular level with superb resolution. Inflammatory cells have been shown to be elevated in different inflammatory diseases with numbers responding to treatment.

Potential has also been shown in assessing conjunctival tumors, with either squamous or melanocytic origin. Goblet cell density can be assessed and is affected by different diseases including dry eye disease, glaucoma, and contact lens use. IVCM connective tissue scarring in trachoma is strongly associated with clinical grading and with scarring progression, as are the presence of dendritiform cells.

IVCM has been used to demonstrate the unique structure of palisades of Vogt which is the natural habitat for stem cells at the corneoscleral limbus.

Conjunctival changes including the presence of epithelial and stromal cyst, goblet cells, dendritiform cells, and stromal fiber pattern have been shown to be associated with surgical outcomes after glaucoma filtering surgery.

Many advances have also been made in evaluating meibomian glands using IVCM.

While research studies have shown exciting potential applications of IVCM for conjunctival diseases, there has not been a corresponding translation to clinical practice. Continued technological developments including improving image resolution, the ability to identify precise location of the scan, and deeper image acquisition in non-transparent conjunctival tissue would help to bridge this gap.

This chapter outlines IVCM imaging of normal conjunctiva and limbus, and looks at how IVCM has been applied to dry eye disease, meibomian gland dysfunction, conjunctival tumors, glaucoma, allergic eye disease and trachoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Efron N, Al-Dossari M, Pritchard N. In vivo confocal microscopy of the palpebral conjunctiva and tarsal plate. Optom Vis Sci. 2009;86(11):E1303–8.

    Article  PubMed  Google Scholar 

  2. Hu VH, Massae P, Weiss HA, Cree IA, Courtright P, Mabey DCW, et al. In vivo confocal microscopy of trachoma in relation to normal tarsal conjunctiva. Ophthalmology. 2011;118(4):747–54.

    Article  PubMed  Google Scholar 

  3. Efron N, Al-Dossari M, Pritchard N. In vivo confocal microscopy of the bulbar conjunctiva. Clin Exp Ophthalmol. 2009;37(4):335–44.

    Article  PubMed  Google Scholar 

  4. Zhu W, Hong J, Zheng T, Le Q, Xu J, Sun X. Age-related changes of human conjunctiva on in vivo confocal microscopy. Br J Ophthalmol. 2010;94(11):1448–53.

    Article  PubMed  Google Scholar 

  5. Kobayashi A, Yoshita T, Sugiyama K. In vivo findings of the bulbar/palpebral conjunctiva and presumed meibomian glands by laser scanning confocal microscopy. Cornea. 2005;24(8):985–8.

    Article  PubMed  Google Scholar 

  6. Steuhl K-P. Ultrastructure of the conjunctival epithelium. Karger Publishers; 1989.

    Google Scholar 

  7. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. Tfos dews ii pathophysiology report. Ocul Surf. 2017;15(3):438–510.

    Article  PubMed  Google Scholar 

  8. Shimmura S, Ono M, Shinozaki K, Toda I, Takamura E, Mashima Y, et al. Sodium hyaluronate eyedrops in the treatment of dry eyes. Br J Ophthalmol. 1995;79(11):1007–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kojima T, Matsumoto Y, Dogru M, Tsubota K. The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease. Mol Vis. 2010;16:2457.

    PubMed  PubMed Central  Google Scholar 

  10. Matsumoto Y, Ibrahim OMA. Application of in vivo confocal microscopy in dry eye disease. Invest Ophthalmol Vis Sci 2018;59(14):DES41–7.

    Google Scholar 

  11. Wakamatsu TH, Sato EA, Matsumoto Y, Ibrahim OMA, Dogru M, Kaido M, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with Sjögren syndrome. Invest Ophthalmol Vis Sci. 2010;51(1):144–50.

    Article  PubMed  Google Scholar 

  12. Goldberg MF, Bron AJ. Limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1982;80:155.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Miri A, Al-Aqaba M, Otri AM, Fares U, Said DG, Faraj LA, et al. In vivo confocal microscopic features of normal limbus. Br J Ophthalmol. 2012;96(4):530–6.

    Article  PubMed  Google Scholar 

  14. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89(5):529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. West JD, Dorà NJ, Collinson JM. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells. 2015;7(2):281.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Le Q, Deng SX, Xu J. In vivo confocal microscopy of congenital aniridia-associated keratopathy. Eye. 2013;27(6):763–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sejpal K, Bakhtiari P, Deng SX. Presentation, diagnosis and management of limbal stem cell deficiency. Middle East Afr J Ophthalmol. 2013;20(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bobba S, Di Girolamo N, Mills R, Daniell M, Chan E, Harkin DG, et al. Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand. Clin Exp Ophthalmol. 2017;45(2):174–81.

    Article  PubMed  Google Scholar 

  19. Catt CJ, Hamilton GM, Fish J, Mireskandari K, Ali A. Ocular manifestations of Stevens-Johnson syndrome and toxic epidermal necrolysis in children. Am J Ophthalmol. 2016;166:68–75.

    Article  PubMed  Google Scholar 

  20. Sivaraman KR, Jivrajka RV, Soin K, Bouchard CS, Movahedan A, Shorter E, et al. Superior limbic keratoconjunctivitis-like inflammation in patients with chronic graft-versus-host disease. Ocul Surf. 2016;14(3):393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kinoshita S, Adachi W, Sotozono C, Nishida K, Yokoi N, Quantock AJ, et al. Characteristics of the human ocular surface epithelium. Prog Retin Eye Res. 2001;20(5):639–73.

    Article  CAS  PubMed  Google Scholar 

  22. Le Q, Yang Y, Deng SX, Xu J. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency. Clin Exp Ophthalmol. 2017;45(3):224–31.

    Article  PubMed  Google Scholar 

  23. Shields CL, Demirci H, Karatza E, Shields JA. Clinical survey of 1643 melanocytic and nonmelanocytic conjunctival tumors. Ophthalmology. 2004;111(9):1747–54.

    Article  PubMed  Google Scholar 

  24. Nguena MB, van den Tweel JG, Makupa W, Hu VH, Weiss HA, Gichuhi S, et al. Diagnosing ocular surface squamous neoplasia in East Africa: case-control study of clinical and in vivo confocal microscopy assessment. Ophthalmology. 2014;121(2):484–91.

    Article  PubMed  Google Scholar 

  25. Messmer EM, Mackert MJ, Zapp DM, Kampik A. In vivo confocal microscopy of pigmented conjunctival tumors. Graefes Arch Clin Exp Ophthalmol. 2006;244(11):1437–45.

    Article  PubMed  Google Scholar 

  26. Folberg R, Jakobiec FA, Bernardino VB, Iwamoto T. Benign conjunctival melanocytic lesions: clinicopathologic features. Ophthalmology. 1989;96(4):436–61.

    Article  CAS  PubMed  Google Scholar 

  27. Cantor LB, Mantravadi A, WuDunn D, Swamynathan K, Cortes A. Morphologic classification of filtering blebs after glaucoma filtration surgery: the Indiana Bleb Appearance Grading Scale. J Glaucoma. 2003;12(3):266–71.

    Article  PubMed  Google Scholar 

  28. Labbé A, Dupas B, Hamard P, Baudouin C. In vivo confocal microscopy study of blebs after filtering surgery. Ophthalmology. 2005;112(11):1979–e1.

    Article  PubMed  Google Scholar 

  29. Caglar C, Karpuzoglu N, Batur M, Yasar T. In vivo confocal microscopy and biomicroscopy of filtering blebs after trabeculectomy. J Glaucoma. 2016;25(4):e377–83.

    Article  PubMed  Google Scholar 

  30. Amar N, Labbé A, Hamard P, Dupas B, Baudouin C. Filtering blebs and aqueous pathway: an immunocytological and in vivo confocal microscopy study. Ophthalmology. 2008;115(7):1154–61.

    Article  PubMed  Google Scholar 

  31. Mastropasqua R, Fasanella V, Brescia L, Oddone F, Mariotti C, Di Staso S, et al. In vivo confocal imaging of the conjunctiva as a predictive tool for the glaucoma filtration surgery outcome. Invest Ophthalmol Vis Sci 2017;58(6):BIO114–20.

    Google Scholar 

  32. Agnifili L, Fasanella V, Mastropasqua R, Frezzotti P, Curcio C, Brescia L, et al. In vivo goblet cell density as a potential indicator of glaucoma filtration surgery outcome. Invest Ophthalmol Vis Sci. 2016;57(7):2928–35.

    Article  CAS  PubMed  Google Scholar 

  33. Ciancaglini M, Carpineto P, Agnifili L, Nubile M, Fasanella V, Mastropasqua L. Conjunctival modifications in ocular hypertension and primary open angle glaucoma: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci. 2008;49(7):3042–8.

    Article  PubMed  Google Scholar 

  34. Agnifili L, Carpineto P, Fasanella V, Mastropasqua R, Zappacosta A, Di Staso S, et al. Conjunctival findings in hyperbaric and low-tension glaucoma: an in vivo confocal microscopy study. Acta Ophthalmol. 2012;90(2):e132–7.

    Article  PubMed  Google Scholar 

  35. Ibrahim OMA, Matsumoto Y, Dogru M, Adan ES, Wakamatsu TH, Goto T, et al. The efficacy, sensitivity, and specificity of in vivo laser confocal microscopy in the diagnosis of meibomian gland dysfunction. Ophthalmology. 2010 Apr;117(4):665–72.

    Article  PubMed  Google Scholar 

  36. Zhou S, Robertson DM. Wide-field in vivo confocal microscopy of meibomian gland acini and rete ridges in the eyelid margin. Invest Ophthalmol Vis Sci. 2018;59(10):4249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Ke M. Meibomian Glands or Not? Identification of In Vivo and Ex Vivo Confocal Microscopy Features and Histological Correlates in the Eyelid Margin. J Ophthalmol. 2020;2020

    Google Scholar 

  38. Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci. 2011;52(4):1938–78.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singhal D, Sahay P, Maharana PK, Raj N, Sharma N, Titiyal JS. Vernal keratoconjunctivitis. Surv Ophthalmol. 2019;64(3):289–311.

    Article  PubMed  Google Scholar 

  40. Le Q, Hong J, Zhu W, Sun X, Xu J. In vivo laser scanning confocal microscopy of vernal keratoconjunctivitis. Clin Exp Ophthalmol. 2011;39(1):53–60.

    PubMed  Google Scholar 

  41. Wakamatsu TH, Okada N, Kojima T, Matsumoto Y, Ibrahim OMA, Dogru M, et al. Evaluation of conjunctival inflammatory status by confocal scanning laser microscopy and conjunctival brush cytology in patients with atopic keratoconjunctivitis (AKC). Mol Vis. 2009;15:1611.

    PubMed  PubMed Central  Google Scholar 

  42. Hu Y, Adan ES, Matsumoto Y, Dogru M, Fukagawa K, Takano Y, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with atopic keratoconjunctivitis. Mol Vis. 2007;13(8):1379–89.

    PubMed  Google Scholar 

  43. Hu VH, Weiss HA, Massae P, Courtright P, Makupa W, Mabey DCW, et al. In vivo confocal microscopy in scarring trachoma. Ophthalmology. 2011;118(11):2138–46.

    Article  PubMed  Google Scholar 

  44. Hu VH, Holland MJ, Cree IA, Pullin J, Weiss HA, Massae P, et al. In vivo confocal microscopy and histopathology of the conjunctiva in trachomatous scarring and normal tissue: a systematic comparison. Br J Ophthalmol. 2013;97(10):1333–7.

    Article  PubMed  Google Scholar 

  45. Hoffman JJ, Massae P, Weiss HA, Makupa W, Burton MJ, Hu VH. In vivo confocal microscopy and trachomatous conjunctival scarring: Predictors for clinical progression. Clin Exp Ophthalmol. 2020;48(9):1152–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Maryam Kasiri MS, imaging technician of our imaging unit at Farabi eye hospital, Tehran University of Medical Sciences for her great contribution in image acquisition and data collection.

Disclosures

None to declare.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latifi, G., Hu, V.H. (2022). Conjunctiva and Limbus. In: In Vivo Confocal Microscopy in Eye Disease. Springer, London. https://doi.org/10.1007/978-1-4471-7517-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7517-9_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7516-2

  • Online ISBN: 978-1-4471-7517-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics