Skip to main content

Inflammation and Keratitis

  • 98 Accesses

Abstract

Host inflammatory cellular response of the cornea occurs in response to an injury or infection. In infective keratitis, the type of inflammatory cellular response and the changes in the host cornea tissue depends on the type of pathogen, the severity of the inflammatory response and the duration of the infective process. IVCM allows direct visualization of the tissue at a cellular level and enables characterization of the cellular response at different layers of the cornea, which can be specific depending on the type of infection. In addition, pathogens such as Acanthamoeba and fungus can be seen on IVCM and they produce specific immune response that aids the clinician in diagnosing and treating the disease process. Despite its usefulness in diagnosing keratitis, there are limitations with current IVCM technology including the difficulty sometimes in differentiating host cells from pathogens and the diagnostic accuracy is depending on the observer experience.

Keywords

  • Inflammation
  • Dendritic cells
  • Keratitis
  • Acanthamoeba
  • Fungus
  • Bacteria
  • Diagnostic accuracy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-7517-9_3
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4471-7517-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Petrescu MS, Larry CL, Bowden RA, Williams GW, Gagen D, Li Z, et al. Neutrophil interactions with keratocytes during corneal epithelial wound healing: a role for CD18 integrins. Invest Ophthalmol Vis Sci. 2007;48(11):5023–9.

    PubMed  Google Scholar 

  2. Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea - a major review. Clin Exp Ophthalmol. 2009;37(1):100–17.

    PubMed  Google Scholar 

  3. Hanlon SD, Smith CW, Sauter MN, Burns AR. Integrin-dependent neutrophil migration in the injured mouse cornea. Exp Eye Res. 2014;120:61–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243(10):1056–61.

    PubMed  Google Scholar 

  5. Mastropasqua L, Nubile M, Lanzini M, Carpineto P, Ciancaglini M, Pannellini T, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol. 2006;142(5):736–44.

    PubMed  Google Scholar 

  6. Postole AS, Knoll AB, Auffarth GU, Mackensen F. In vivo confocal microscopy of inflammatory cells in the corneal subbasal nerve plexus in patients with different subtypes of anterior uveitis. Br J Ophthalmol. 2016;100(11):1551–6.

    PubMed  Google Scholar 

  7. Yamagami S, Yokoo S, Usui T, Yamagami H, Amano S, Ebihara N. Distinct populations of dendritic cells in the normal human donor corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46(12):4489–94.

    PubMed  Google Scholar 

  8. Hamrah P, Liu Y, Zhang Q, Dana MR. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci. 2003;44(2):581–9.

    PubMed  Google Scholar 

  9. Sindt CW, Grout TK, Critser DB, Kern JR, Meadows DL. Dendritic immune cell densities in the central cornea associated with soft contact lens types and lens care solution types: a pilot study. Clin Ophthalmol. 2012;6:511–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, et al. In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun. 2013;19(4):348–54.

    PubMed  Google Scholar 

  11. Cavalcanti BM, Cruzat A, Sahin A, Pavan-Langston D, Samayoa E, Hamrah P. In vivo confocal microscopy detects bilateral changes of corneal immune cells and nerves in unilateral herpes zoster ophthalmicus. Ocul Surf. 2018;16(1):101–11.

    PubMed  Google Scholar 

  12. Wu LQ, Cheng JW, Cai JP, Le QH, Ma XY, Gao LD, et al. Observation of corneal langerhans cells by in vivo confocal microscopy in thyroid-associated ophthalmopathy. Curr Eye Res. 2016;41(7):927–32.

    CAS  PubMed  Google Scholar 

  13. Resch MD, Marsovszky L, Németh J, Bocskai M, Kovács L, Balog A. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J Ophthalmol. 2015;2015:543835.

    PubMed  PubMed Central  Google Scholar 

  14. Steger B, Speicher L, Philipp W, Bechrakis NE. In vivo confocal microscopic characterisation of the cornea in chronic graft-versus-host disease related severe dry eye disease. Br J Ophthalmol. 2015;99(2):160–5.

    CAS  PubMed  Google Scholar 

  15. Tepelus TC, Chiu GB, Maram J, Huang J, Chopra V, Sadda SR, et al. Corneal features in ocular graft-versus-host disease by in vivo confocal microscopy. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2389–97.

    PubMed  Google Scholar 

  16. Tepelus TC, Huang J, Sadda SR, Lee OL. Characterization of corneal involvement in eyes with mucous membrane pemphigoid by in vivo confocal microscopy. Cornea. 2017;36(8):933–41.

    PubMed  Google Scholar 

  17. Liu M, Gao H, Wang T, Wang S, Li S, Shi W. An essential role for dendritic cells in vernal keratoconjunctivitis: analysis by laser scanning confocal microscopy. Clin Exp Allergy. 2014;44(3):362–70.

    PubMed  Google Scholar 

  18. Hau S, Clarke B, Thaung C, Larkin DFP. Longitudinal changes in corneal leucocyte density in vivo following transplantation. Br J Ophthalmol. 2019;103(8):1035–41.

    PubMed  Google Scholar 

  19. Patel DV, Zhang J, McGhee CNJ. In vivo confocal microscopy of the inflamed anterior segment: a review of clinical and research applications. Clin Exp Ophthalmol. 2019;47(3):334–45.

    PubMed  Google Scholar 

  20. Torricelli AA, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res. 2016;142:110–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson SE, Medeiros CS, Santhiago MR. pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries. J Refract Surg. 2018;34(1):59–64.

    PubMed  PubMed Central  Google Scholar 

  22. Saikia P, Crabb JS, Dibbin LL, Juszczak MJ, Willard B, Jang G-F, et al. Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep. 2020;10(1):16717.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonfioli AA, Curi AL, Orefice F. Fuchs’ heterochromic cyclitis. Semin Ophthalmol. 2005;20(3):143–6.

    PubMed  Google Scholar 

  24. Mahendradas P, Shetty R, Narayana KM, Shetty BK. In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology. 2010;117(2):373–80.

    PubMed  Google Scholar 

  25. Mocan MC, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behçet’s disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2009;23(5):1221–7.

    CAS  Google Scholar 

  26. Wertheim MS, Mathers WD, Planck SJ, Martin TM, Suhler EB, Smith JR, et al. In vivo confocal microscopy of keratic precipitates. Arch Ophthalmol. 2004;122(12):1773–81.

    PubMed  Google Scholar 

  27. Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol. 2019;64(3):255–71.

    PubMed  Google Scholar 

  28. Morlet N, Daniell M. Microbial keratitis: what's the preferred initial therapy? View 2: empirical fluoroquinolone therapy is sufficient initial treatment. Br J Ophthalmol. 2003;87(9):1169–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sutphin JE, Kantor AL, Mathers WD, Mehaffey MG. Evaluation of infectious crystalline keratitis with confocal microscopy in a case series. Cornea. 1997;16(1):21–6.

    CAS  PubMed  Google Scholar 

  30. Jones SM, Yerly J, Hu Y, Ceri H, Martinuzzi R. Structure of Proteus mirabilis biofilms grown in artificial urine and standard laboratory media. FEMS Microbiol Lett. 2007;268(1):16–21.

    CAS  PubMed  Google Scholar 

  31. Catlin BW. Cellular elongation under the influence of antibacterial agents: way to differentiate coccobacilli from cocci. J Clin Microbiol. 1975;1(1):102–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chidambaram JD, Prajna NV, Palepu S, Lanjewar S, Shah M, Elakkiya S, et al. In vivo confocal microscopy cellular features of host and organism in bacterial, fungal, and Acanthamoeba keratitis. Am J Ophthalmol. 2018;190:24–33.

    PubMed  PubMed Central  Google Scholar 

  33. Vaddavalli PK, Garg P, Sharma S, Thomas R, Rao GN. Confocal microscopy for Nocardia keratitis. Ophthalmology. 2006;113(9):1645–50.

    PubMed  Google Scholar 

  34. De Craene S, Knoeri J, Georgeon C, Kestelyn P, Borderie VM. Assessment of confocal microscopy for the diagnosis of polymerase chain reaction-positive Acanthamoeba keratitis: a case-control study. Ophthalmology. 2018;125(2):161–8.

    PubMed  Google Scholar 

  35. Tu EY, Joslin CE, Sugar J, Shoff ME, Booton GC. Prognostic factors affecting visual outcome in Acanthamoeba keratitis. Ophthalmology. 2008;115(11):1998–2003.

    PubMed  Google Scholar 

  36. Chopra R, Mulholland PJ, Hau SC. In vivo confocal microscopy morphological features and cyst density in Acanthamoeba keratitis. Am J Ophthalmol 2020.

    Google Scholar 

  37. Kobayashi A, Yokogawa H, Yamazaki N, Ishibashi Y, Oikawa Y, Tokoro M, et al. In vivo laser confocal microscopy findings of radial keratoneuritis in patients with early stage Acanthamoeba keratitis. Ophthalmology. 2013;120(7):1348–53.

    PubMed  Google Scholar 

  38. Huang P, Tepelus T, Vickers LA, Baghdasaryan E, Huang J, Irvine JA, et al. Quantitative analysis of depth, distribution, and density of cysts in Acanthamoeba keratitis using confocal microscopy. Cornea. 2017;36(8):927–32.

    PubMed  Google Scholar 

  39. Wang YE, Tepelus TC, Gui W, Irvine JA, Lee OL, Hsu HY. Reduction of Acanthamoeba cyst density associated with treatment detected by in vivo confocal microscopy in Acanthamoeba keratitis. Cornea. 2019;38(4):463–8.

    PubMed  Google Scholar 

  40. Chidambaram JD, Prajna NV, Larke NL, Palepu S, Lanjewar S, Shah M, et al. Prospective study of the diagnostic accuracy of the in vivo laser scanning confocal microscope for severe microbial keratitis. Ophthalmology. 2016;123(11):2285–93.

    PubMed  Google Scholar 

  41. Vaddavalli PK, Garg P, Sharma S, Sangwan VS, Rao GN, Thomas R. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis. Ophthalmology. 2011;118(1):29–35.

    PubMed  Google Scholar 

  42. Zhang X, Sun X, Jiang C, Wang Z, Zhang Y, Deng S, et al. A new in vivo confocal microscopy prognostic factor in Acanthamoeba keratitis. J Fr Ophtalmol. 2014;37(2):130–7.

    CAS  PubMed  Google Scholar 

  43. Pfister DR, Cameron JD, Krachmer JH, Holland EJ. Confocal microscopy findings of Acanthamoeba keratitis. Am J Ophthalmol. 1996;121(2):119–28.

    CAS  PubMed  Google Scholar 

  44. Alomar T, Matthew M, Donald F, Maharajan S, Dua HS. In vivo confocal microscopy in the diagnosis and management of acanthamoeba keratitis showing new cystic forms. Clin Exp Ophthalmol. 2009;37(7):737–9.

    PubMed  Google Scholar 

  45. Li S, Bian J, Wang Y, Wang S, Wang X, Shi W. Clinical features and serial changes of Acanthamoeba keratitis: an in vivo confocal microscopy study. Eye. 2020;34(2):327–34.

    PubMed  Google Scholar 

  46. Vemuganti GK, Reddy K, Iftekhar G, Garg P, Sharma S. Keratocyte loss in corneal infection through apoptosis: a histologic study of 59 cases. BMC Ophthalmol. 2004;4:16.

    PubMed  PubMed Central  Google Scholar 

  47. Vemuganti GK, Sharma S, Athmanathan S, Garg P. Keratocyte loss in Acanthamoeba keratitis: phagocytosis, necrosis or apoptosis? Indian J Ophthalmol. 2000;48(4):291–4.

    CAS  PubMed  Google Scholar 

  48. Takaoka-Sugihara N, Yamagami S, Yokoo S, Matsubara M, Yagita K. Cytopathic effect of Acanthamoeba on human corneal fibroblasts. Mol Vis. 2012;18:2221–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Brasnu E, Bourcier T, Dupas B, Degorge S, Rodallec T, Laroche L, et al. In vivo confocal microscopy in fungal keratitis. Br J Ophthalmol. 2007;91(5):588–91.

    PubMed  Google Scholar 

  50. Chidambaram JD, Prajna NV, Palepu S, Lanjewar S, Shah M, Elakkiya S, et al. Cellular morphological changes detected by laser scanning in vivo confocal microscopy associated with clinical outcome in fungal keratitis. Sci Rep. 2019;9(1):8334.

    PubMed  PubMed Central  Google Scholar 

  51. Chidambaram JD, Prajna NV, Larke N, Macleod D, Srikanthi P, Lanjewar S, et al. In vivo confocal microscopy appearance of Fusarium and Aspergillus species in fungal keratitis. Br J Ophthalmol. 2017;101(8):1119–23.

    PubMed  Google Scholar 

  52. Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80.

    PubMed  PubMed Central  Google Scholar 

  53. Schofield CM, Murray CK, Horvath EE, Cancio LC, Kim SH, Wolf SE, et al. Correlation of culture with histopathology in fungal burn wound colonization and infection. Burns. 2007;33(3):341–6.

    PubMed  Google Scholar 

  54. Cruzat A, Witkin D, Baniasadi N, Zheng L, Ciolino JB, Jurkunas UV, et al. Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis. Invest Ophthalmol Vis Sci. 2011;52(8):5136–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Muller RT, Abedi F, Cruzat A, Witkin D, Baniasadi N, Cavalcanti BM, et al. Degeneration and regeneration of subbasal corneal nerves after infectious keratitis: a longitudinal in vivo confocal microscopy study. Ophthalmology. 2015;122(11):2200–9.

    PubMed  Google Scholar 

  56. Didier ES. Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop. 2005;94(1):61–76.

    CAS  PubMed  Google Scholar 

  57. Sagoo MS, Mehta JS, Hau S, Irion LD, Curry A, Bonshek RE, et al. Microsporidium stromal keratitis: in vivo confocal findings. Cornea. 2007;26(7):870–3.

    PubMed  Google Scholar 

  58. Malhotra C, Jain AK, Kaur S, Dhingra D, Hemanth V, Sharma SP. In vivo confocal microscopic characteristics of microsporidial keratoconjunctivitis in immunocompetent adults. Br J Ophthalmol. 2017;101(9):1217–22.

    PubMed  Google Scholar 

  59. Hau SC, Dart JK, Vesaluoma M, Parmar DN, Claerhout I, Bibi K, et al. Diagnostic accuracy of microbial keratitis with in vivo scanning laser confocal microscopy. Br J Ophthalmol. 2010;94(8):982–7.

    PubMed  Google Scholar 

  60. Kanavi MR, Javadi M, Yazdani S, Mirdehghanm S. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis. Cornea. 2007;26(7):782–6.

    PubMed  Google Scholar 

  61. Tu EY, Joslin CE, Sugar J, Booton GC, Shoff ME, Fuerst PA. The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of Acanthamoeba keratitis. Cornea. 2008;27(7):764–72.

    PubMed  Google Scholar 

  62. Kheirkhah A, Satitpitakul V, Syed ZA, Muller R, Goyal S, Tu EY, et al. Factors influencing the diagnostic accuracy of laser-scanning in vivo confocal microscopy for Acanthamoeba keratitis. Cornea. 2018;37(7):818–23.

    PubMed  Google Scholar 

  63. Kheirkhah A, Syed ZA, Satitpitakul V, Goyal S, Muller R, Tu EY, et al. Sensitivity and specificity of laser-scanning in vivo confocal microscopy for filamentous fungal keratitis: role of observer experience. Am J Ophthalmol. 2017;179:81–9.

    PubMed  Google Scholar 

  64. Goh JWY, Harrison R, Hau S, Alexander CL, Tole DM, Avadhanam VS. Comparison of in vivo confocal microscopy, PCR and culture of corneal scrapes in the diagnosis of Acanthamoeba keratitis. Cornea. 2018;37(4):480–5.

    PubMed  Google Scholar 

  65. Fust A, Toth J, Simon G, Imre L, Nagy ZZ. Specificity of in vivo confocal cornea microscopy in Acanthamoeba keratitis. Eur J Ophthalmol. 2017;27(1):10–5.

    PubMed  Google Scholar 

  66. Dawson CR, Hanna L, Togni B. Adenovirus type 8 infections in the United States. IV. Observations on the pathogenesis of lesions in severe eye disease. Arch Ophthalmol. 1972;87(3):258–68.

    CAS  PubMed  Google Scholar 

  67. Chodosh J, Astley RA, Butler MG, Kennedy RC. Adenovirus keratitis: a role for interleukin-8. Invest Ophthalmol Vis Sci. 2000;41(3):783–9.

    CAS  PubMed  Google Scholar 

  68. Dosso AA, Rungger-Brändle E. Clinical course of epidemic keratoconjunctivitis: evaluation by in vivo confocal microscopy. Cornea. 2008;27(3):263–8.

    PubMed  Google Scholar 

  69. Yokogawa H, Kobayashi A, Mori N, Sugiyama K. Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy. Clin Ophthalmol. 2015;9:1771–7.

    PubMed  PubMed Central  Google Scholar 

  70. Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, et al. Cellular changes of the corneal epithelium and stroma in herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology. 2012;119(9):1791–7.

    PubMed  Google Scholar 

  71. Rosenberg ME, Tervo TM, Müller LJ, Moilanen JA, Vesaluoma MH. In vivo confocal microscopy after herpes keratitis. Cornea. 2002;21(3):265–9.

    PubMed  Google Scholar 

  72. Hamrah P, Cruzat A, Dastjerdi MH, Zheng L, Shahatit BM, Bayhan HA, et al. Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology. 2010;117(10):1930–6.

    PubMed  Google Scholar 

  73. Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, et al. In Vivo confocal microscopic changes of the corneal epithelium and stroma in patients with herpes zoster ophthalmicus. Am J Ophthalmol. 2015;159(6):1036–44.e1.

    PubMed  PubMed Central  Google Scholar 

  74. Yokogawa H, Kobayashi A, Sugiyama K. Mapping owl’s eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy. Jpn J Ophthalmol. 2013;57(1):80–4.

    PubMed  Google Scholar 

  75. Shiraishi A, Hara Y, Takahashi M, Oka N, Yamaguchi M, Suzuki T, et al. Demonstration of “owl’s eye” morphology by confocal microscopy in a patient with presumed cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2007;143(4):715–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Hau .

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hau, S. (2022). Inflammation and Keratitis. In: In Vivo Confocal Microscopy in Eye Disease. Springer, London. https://doi.org/10.1007/978-1-4471-7517-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7517-9_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7516-2

  • Online ISBN: 978-1-4471-7517-9

  • eBook Packages: MedicineMedicine (R0)