Petrescu MS, Larry CL, Bowden RA, Williams GW, Gagen D, Li Z, et al. Neutrophil interactions with keratocytes during corneal epithelial wound healing: a role for CD18 integrins. Invest Ophthalmol Vis Sci. 2007;48(11):5023–9.
PubMed
Google Scholar
Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea - a major review. Clin Exp Ophthalmol. 2009;37(1):100–17.
PubMed
Google Scholar
Hanlon SD, Smith CW, Sauter MN, Burns AR. Integrin-dependent neutrophil migration in the injured mouse cornea. Exp Eye Res. 2014;120:61–70.
CAS
PubMed
PubMed Central
Google Scholar
Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243(10):1056–61.
PubMed
Google Scholar
Mastropasqua L, Nubile M, Lanzini M, Carpineto P, Ciancaglini M, Pannellini T, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol. 2006;142(5):736–44.
PubMed
Google Scholar
Postole AS, Knoll AB, Auffarth GU, Mackensen F. In vivo confocal microscopy of inflammatory cells in the corneal subbasal nerve plexus in patients with different subtypes of anterior uveitis. Br J Ophthalmol. 2016;100(11):1551–6.
PubMed
Google Scholar
Yamagami S, Yokoo S, Usui T, Yamagami H, Amano S, Ebihara N. Distinct populations of dendritic cells in the normal human donor corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46(12):4489–94.
PubMed
Google Scholar
Hamrah P, Liu Y, Zhang Q, Dana MR. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci. 2003;44(2):581–9.
PubMed
Google Scholar
Sindt CW, Grout TK, Critser DB, Kern JR, Meadows DL. Dendritic immune cell densities in the central cornea associated with soft contact lens types and lens care solution types: a pilot study. Clin Ophthalmol. 2012;6:511–9.
CAS
PubMed
PubMed Central
Google Scholar
Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, et al. In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun. 2013;19(4):348–54.
PubMed
Google Scholar
Cavalcanti BM, Cruzat A, Sahin A, Pavan-Langston D, Samayoa E, Hamrah P. In vivo confocal microscopy detects bilateral changes of corneal immune cells and nerves in unilateral herpes zoster ophthalmicus. Ocul Surf. 2018;16(1):101–11.
PubMed
Google Scholar
Wu LQ, Cheng JW, Cai JP, Le QH, Ma XY, Gao LD, et al. Observation of corneal langerhans cells by in vivo confocal microscopy in thyroid-associated ophthalmopathy. Curr Eye Res. 2016;41(7):927–32.
CAS
PubMed
Google Scholar
Resch MD, Marsovszky L, Németh J, Bocskai M, Kovács L, Balog A. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J Ophthalmol. 2015;2015:543835.
PubMed
PubMed Central
Google Scholar
Steger B, Speicher L, Philipp W, Bechrakis NE. In vivo confocal microscopic characterisation of the cornea in chronic graft-versus-host disease related severe dry eye disease. Br J Ophthalmol. 2015;99(2):160–5.
CAS
PubMed
Google Scholar
Tepelus TC, Chiu GB, Maram J, Huang J, Chopra V, Sadda SR, et al. Corneal features in ocular graft-versus-host disease by in vivo confocal microscopy. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2389–97.
PubMed
Google Scholar
Tepelus TC, Huang J, Sadda SR, Lee OL. Characterization of corneal involvement in eyes with mucous membrane pemphigoid by in vivo confocal microscopy. Cornea. 2017;36(8):933–41.
PubMed
Google Scholar
Liu M, Gao H, Wang T, Wang S, Li S, Shi W. An essential role for dendritic cells in vernal keratoconjunctivitis: analysis by laser scanning confocal microscopy. Clin Exp Allergy. 2014;44(3):362–70.
PubMed
Google Scholar
Hau S, Clarke B, Thaung C, Larkin DFP. Longitudinal changes in corneal leucocyte density in vivo following transplantation. Br J Ophthalmol. 2019;103(8):1035–41.
PubMed
Google Scholar
Patel DV, Zhang J, McGhee CNJ. In vivo confocal microscopy of the inflamed anterior segment: a review of clinical and research applications. Clin Exp Ophthalmol. 2019;47(3):334–45.
PubMed
Google Scholar
Torricelli AA, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res. 2016;142:110–8.
CAS
PubMed
PubMed Central
Google Scholar
Wilson SE, Medeiros CS, Santhiago MR. pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries. J Refract Surg. 2018;34(1):59–64.
PubMed
PubMed Central
Google Scholar
Saikia P, Crabb JS, Dibbin LL, Juszczak MJ, Willard B, Jang G-F, et al. Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep. 2020;10(1):16717.
CAS
PubMed
PubMed Central
Google Scholar
Bonfioli AA, Curi AL, Orefice F. Fuchs’ heterochromic cyclitis. Semin Ophthalmol. 2005;20(3):143–6.
PubMed
Google Scholar
Mahendradas P, Shetty R, Narayana KM, Shetty BK. In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology. 2010;117(2):373–80.
PubMed
Google Scholar
Mocan MC, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behçet’s disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2009;23(5):1221–7.
CAS
Google Scholar
Wertheim MS, Mathers WD, Planck SJ, Martin TM, Suhler EB, Smith JR, et al. In vivo confocal microscopy of keratic precipitates. Arch Ophthalmol. 2004;122(12):1773–81.
PubMed
Google Scholar
Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol. 2019;64(3):255–71.
PubMed
Google Scholar
Morlet N, Daniell M. Microbial keratitis: what's the preferred initial therapy? View 2: empirical fluoroquinolone therapy is sufficient initial treatment. Br J Ophthalmol. 2003;87(9):1169–72.
CAS
PubMed
PubMed Central
Google Scholar
Sutphin JE, Kantor AL, Mathers WD, Mehaffey MG. Evaluation of infectious crystalline keratitis with confocal microscopy in a case series. Cornea. 1997;16(1):21–6.
CAS
PubMed
Google Scholar
Jones SM, Yerly J, Hu Y, Ceri H, Martinuzzi R. Structure of Proteus mirabilis biofilms grown in artificial urine and standard laboratory media. FEMS Microbiol Lett. 2007;268(1):16–21.
CAS
PubMed
Google Scholar
Catlin BW. Cellular elongation under the influence of antibacterial agents: way to differentiate coccobacilli from cocci. J Clin Microbiol. 1975;1(1):102–5.
CAS
PubMed
PubMed Central
Google Scholar
Chidambaram JD, Prajna NV, Palepu S, Lanjewar S, Shah M, Elakkiya S, et al. In vivo confocal microscopy cellular features of host and organism in bacterial, fungal, and Acanthamoeba keratitis. Am J Ophthalmol. 2018;190:24–33.
PubMed
PubMed Central
Google Scholar
Vaddavalli PK, Garg P, Sharma S, Thomas R, Rao GN. Confocal microscopy for Nocardia keratitis. Ophthalmology. 2006;113(9):1645–50.
PubMed
Google Scholar
De Craene S, Knoeri J, Georgeon C, Kestelyn P, Borderie VM. Assessment of confocal microscopy for the diagnosis of polymerase chain reaction-positive Acanthamoeba keratitis: a case-control study. Ophthalmology. 2018;125(2):161–8.
PubMed
Google Scholar
Tu EY, Joslin CE, Sugar J, Shoff ME, Booton GC. Prognostic factors affecting visual outcome in Acanthamoeba keratitis. Ophthalmology. 2008;115(11):1998–2003.
PubMed
Google Scholar
Chopra R, Mulholland PJ, Hau SC. In vivo confocal microscopy morphological features and cyst density in Acanthamoeba keratitis. Am J Ophthalmol 2020.
Google Scholar
Kobayashi A, Yokogawa H, Yamazaki N, Ishibashi Y, Oikawa Y, Tokoro M, et al. In vivo laser confocal microscopy findings of radial keratoneuritis in patients with early stage Acanthamoeba keratitis. Ophthalmology. 2013;120(7):1348–53.
PubMed
Google Scholar
Huang P, Tepelus T, Vickers LA, Baghdasaryan E, Huang J, Irvine JA, et al. Quantitative analysis of depth, distribution, and density of cysts in Acanthamoeba keratitis using confocal microscopy. Cornea. 2017;36(8):927–32.
PubMed
Google Scholar
Wang YE, Tepelus TC, Gui W, Irvine JA, Lee OL, Hsu HY. Reduction of Acanthamoeba cyst density associated with treatment detected by in vivo confocal microscopy in Acanthamoeba keratitis. Cornea. 2019;38(4):463–8.
PubMed
Google Scholar
Chidambaram JD, Prajna NV, Larke NL, Palepu S, Lanjewar S, Shah M, et al. Prospective study of the diagnostic accuracy of the in vivo laser scanning confocal microscope for severe microbial keratitis. Ophthalmology. 2016;123(11):2285–93.
PubMed
Google Scholar
Vaddavalli PK, Garg P, Sharma S, Sangwan VS, Rao GN, Thomas R. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis. Ophthalmology. 2011;118(1):29–35.
PubMed
Google Scholar
Zhang X, Sun X, Jiang C, Wang Z, Zhang Y, Deng S, et al. A new in vivo confocal microscopy prognostic factor in Acanthamoeba keratitis. J Fr Ophtalmol. 2014;37(2):130–7.
CAS
PubMed
Google Scholar
Pfister DR, Cameron JD, Krachmer JH, Holland EJ. Confocal microscopy findings of Acanthamoeba keratitis. Am J Ophthalmol. 1996;121(2):119–28.
CAS
PubMed
Google Scholar
Alomar T, Matthew M, Donald F, Maharajan S, Dua HS. In vivo confocal microscopy in the diagnosis and management of acanthamoeba keratitis showing new cystic forms. Clin Exp Ophthalmol. 2009;37(7):737–9.
PubMed
Google Scholar
Li S, Bian J, Wang Y, Wang S, Wang X, Shi W. Clinical features and serial changes of Acanthamoeba keratitis: an in vivo confocal microscopy study. Eye. 2020;34(2):327–34.
PubMed
Google Scholar
Vemuganti GK, Reddy K, Iftekhar G, Garg P, Sharma S. Keratocyte loss in corneal infection through apoptosis: a histologic study of 59 cases. BMC Ophthalmol. 2004;4:16.
PubMed
PubMed Central
Google Scholar
Vemuganti GK, Sharma S, Athmanathan S, Garg P. Keratocyte loss in Acanthamoeba keratitis: phagocytosis, necrosis or apoptosis? Indian J Ophthalmol. 2000;48(4):291–4.
CAS
PubMed
Google Scholar
Takaoka-Sugihara N, Yamagami S, Yokoo S, Matsubara M, Yagita K. Cytopathic effect of Acanthamoeba on human corneal fibroblasts. Mol Vis. 2012;18:2221–8.
CAS
PubMed
PubMed Central
Google Scholar
Brasnu E, Bourcier T, Dupas B, Degorge S, Rodallec T, Laroche L, et al. In vivo confocal microscopy in fungal keratitis. Br J Ophthalmol. 2007;91(5):588–91.
PubMed
Google Scholar
Chidambaram JD, Prajna NV, Palepu S, Lanjewar S, Shah M, Elakkiya S, et al. Cellular morphological changes detected by laser scanning in vivo confocal microscopy associated with clinical outcome in fungal keratitis. Sci Rep. 2019;9(1):8334.
PubMed
PubMed Central
Google Scholar
Chidambaram JD, Prajna NV, Larke N, Macleod D, Srikanthi P, Lanjewar S, et al. In vivo confocal microscopy appearance of Fusarium and Aspergillus species in fungal keratitis. Br J Ophthalmol. 2017;101(8):1119–23.
PubMed
Google Scholar
Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80.
PubMed
PubMed Central
Google Scholar
Schofield CM, Murray CK, Horvath EE, Cancio LC, Kim SH, Wolf SE, et al. Correlation of culture with histopathology in fungal burn wound colonization and infection. Burns. 2007;33(3):341–6.
PubMed
Google Scholar
Cruzat A, Witkin D, Baniasadi N, Zheng L, Ciolino JB, Jurkunas UV, et al. Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis. Invest Ophthalmol Vis Sci. 2011;52(8):5136–43.
CAS
PubMed
PubMed Central
Google Scholar
Muller RT, Abedi F, Cruzat A, Witkin D, Baniasadi N, Cavalcanti BM, et al. Degeneration and regeneration of subbasal corneal nerves after infectious keratitis: a longitudinal in vivo confocal microscopy study. Ophthalmology. 2015;122(11):2200–9.
PubMed
Google Scholar
Didier ES. Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop. 2005;94(1):61–76.
CAS
PubMed
Google Scholar
Sagoo MS, Mehta JS, Hau S, Irion LD, Curry A, Bonshek RE, et al. Microsporidium stromal keratitis: in vivo confocal findings. Cornea. 2007;26(7):870–3.
PubMed
Google Scholar
Malhotra C, Jain AK, Kaur S, Dhingra D, Hemanth V, Sharma SP. In vivo confocal microscopic characteristics of microsporidial keratoconjunctivitis in immunocompetent adults. Br J Ophthalmol. 2017;101(9):1217–22.
PubMed
Google Scholar
Hau SC, Dart JK, Vesaluoma M, Parmar DN, Claerhout I, Bibi K, et al. Diagnostic accuracy of microbial keratitis with in vivo scanning laser confocal microscopy. Br J Ophthalmol. 2010;94(8):982–7.
PubMed
Google Scholar
Kanavi MR, Javadi M, Yazdani S, Mirdehghanm S. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis. Cornea. 2007;26(7):782–6.
PubMed
Google Scholar
Tu EY, Joslin CE, Sugar J, Booton GC, Shoff ME, Fuerst PA. The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of Acanthamoeba keratitis. Cornea. 2008;27(7):764–72.
PubMed
Google Scholar
Kheirkhah A, Satitpitakul V, Syed ZA, Muller R, Goyal S, Tu EY, et al. Factors influencing the diagnostic accuracy of laser-scanning in vivo confocal microscopy for Acanthamoeba keratitis. Cornea. 2018;37(7):818–23.
PubMed
Google Scholar
Kheirkhah A, Syed ZA, Satitpitakul V, Goyal S, Muller R, Tu EY, et al. Sensitivity and specificity of laser-scanning in vivo confocal microscopy for filamentous fungal keratitis: role of observer experience. Am J Ophthalmol. 2017;179:81–9.
PubMed
Google Scholar
Goh JWY, Harrison R, Hau S, Alexander CL, Tole DM, Avadhanam VS. Comparison of in vivo confocal microscopy, PCR and culture of corneal scrapes in the diagnosis of Acanthamoeba keratitis. Cornea. 2018;37(4):480–5.
PubMed
Google Scholar
Fust A, Toth J, Simon G, Imre L, Nagy ZZ. Specificity of in vivo confocal cornea microscopy in Acanthamoeba keratitis. Eur J Ophthalmol. 2017;27(1):10–5.
PubMed
Google Scholar
Dawson CR, Hanna L, Togni B. Adenovirus type 8 infections in the United States. IV. Observations on the pathogenesis of lesions in severe eye disease. Arch Ophthalmol. 1972;87(3):258–68.
CAS
PubMed
Google Scholar
Chodosh J, Astley RA, Butler MG, Kennedy RC. Adenovirus keratitis: a role for interleukin-8. Invest Ophthalmol Vis Sci. 2000;41(3):783–9.
CAS
PubMed
Google Scholar
Dosso AA, Rungger-Brändle E. Clinical course of epidemic keratoconjunctivitis: evaluation by in vivo confocal microscopy. Cornea. 2008;27(3):263–8.
PubMed
Google Scholar
Yokogawa H, Kobayashi A, Mori N, Sugiyama K. Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy. Clin Ophthalmol. 2015;9:1771–7.
PubMed
PubMed Central
Google Scholar
Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, et al. Cellular changes of the corneal epithelium and stroma in herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology. 2012;119(9):1791–7.
PubMed
Google Scholar
Rosenberg ME, Tervo TM, Müller LJ, Moilanen JA, Vesaluoma MH. In vivo confocal microscopy after herpes keratitis. Cornea. 2002;21(3):265–9.
PubMed
Google Scholar
Hamrah P, Cruzat A, Dastjerdi MH, Zheng L, Shahatit BM, Bayhan HA, et al. Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology. 2010;117(10):1930–6.
PubMed
Google Scholar
Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, et al. In Vivo confocal microscopic changes of the corneal epithelium and stroma in patients with herpes zoster ophthalmicus. Am J Ophthalmol. 2015;159(6):1036–44.e1.
PubMed
PubMed Central
Google Scholar
Yokogawa H, Kobayashi A, Sugiyama K. Mapping owl’s eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy. Jpn J Ophthalmol. 2013;57(1):80–4.
PubMed
Google Scholar
Shiraishi A, Hara Y, Takahashi M, Oka N, Yamaguchi M, Suzuki T, et al. Demonstration of “owl’s eye” morphology by confocal microscopy in a patient with presumed cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2007;143(4):715–7.
PubMed
Google Scholar