Skip to main content

Deep Learning

  • Chapter
  • First Online:
Book cover Neural Networks and Statistical Learning

Abstract

The advent of deep learning has dramatically improved the state of the art in artificial intelligence (AI). Deep learning is regarded as the AI model closest to the human brain due to its deep structure. Deep learning has been widely used in pattern understanding and recognition fields that are traditionally hard to solve. This chapter introduces deep learning and deep learning networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hamid, O., Mohamed, A., Jiang, H., & Penn, G. (2012). Applying convolutional neural network concepts to hybrid NN-HMM model for speech recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto, Japan.

    Google Scholar 

  2. Audhkhasi, K., Osoba, O., & Kosko, B. (2016). Noise-enhanced convolutional neural networks. Neural Networks, 78, 15–23.

    Article  MATH  Google Scholar 

  3. Ba, J., Mnih, V., & Kavukcuoglu, K. (2014). Multiple object recognition with visual attention. Proceedings of International Conference on Learning Representations.

    Google Scholar 

  4. Bartlett, P. L., Harvey, N., Liaw, C., & Mehrabian, A. (2019). Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20, 1–17.

    Google Scholar 

  5. Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 253–279.

    Article  Google Scholar 

  6. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise training of deep networks. In B. Schlkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural information processing systems (Vol. 19, pp. 153–160). Cambridge, MA: MIT Press.

    Google Scholar 

  8. Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically plausible deep learning. arXiv:1502.04156, 1–10.

  9. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning longterm dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Article  Google Scholar 

  10. Bianchini, M., & Scarselli, F. (2014). On the complexity of neural network classifiers: A comparison between shallow and deep architectures. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1553–1565.

    Article  Google Scholar 

  11. Boser, B., Sackinger, E., Bromley, J., LeCun, Y., & Jackel, L. (1991). An analog neural network processor with programmable topology. IEEE Journal of Solid-State Circuits, 26, 2017–2025.

    Article  Google Scholar 

  12. Bruna, J., Szlam, A., & LeCun, Y. (2014). Signal recovery from pooling representations. In Proceedings of the 31st International Conference on Machine Learning (pp. 307–315).

    Google Scholar 

  13. Chen, B., Ting, J.-A., Marlin, B., & de Freitas, N. (2010). Deep learning of invariant spatio-temporal features from video. In Proceedings of NIPS Workshop on Deep Learning and Unsupervised Feature Learning.

    Google Scholar 

  14. Chen, X.-W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525.

    Article  Google Scholar 

  15. Chien, J.-T., & Bao, Y.-T. (2018). Tensor-factorized neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1998–2011.

    Article  MathSciNet  Google Scholar 

  16. Chui, C. K., Li, X., & Mhaskar, H. N. (1994). Neural networks for localized approximation. Mathematics of Computation, 63(208), 607–623.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12), 3207–3220.

    Article  Google Scholar 

  18. Delalleau, O., & Bengio, Y. (2011). Shallow vs. deep sum-product networks. Advances in neural information processing systems (pp. 666–674).

    Google Scholar 

  19. Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pretrained deep neural networks for large-vocabulary speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 20(1), 30–42.

    Article  Google Scholar 

  20. Deng, L., Yu, D., & Platt, J. (2012). Scalable stacking and learning for building deep architectures. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 2133–2136).

    Google Scholar 

  21. Diaz-Vico, D., & Dorronsoro, J. R. (2019). Deep least squares fisher discriminant analysis. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2019.2906302.

  22. Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307.

    Article  Google Scholar 

  23. Edelman, G. M., & Mountcastle, V. B. (1978). The mindful brain: Cortical organization and the group-selective theory of higher brain function. Cambridge, MA: MIT Press.

    Google Scholar 

  24. Eldan, R., & Shamir, O. (2016). The power of depth for feedforward neural networks. In Proceedings of the 29th Annual Conference on Learning Theory (PMLR Vol. 49, pp. 907–940). New York, NY.

    Google Scholar 

  25. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11, 625–660.

    MathSciNet  MATH  Google Scholar 

  26. Esmaeilzehi, A., Ahmad, M. O., & Swamy, M. N. S. (2018). CompNet: A new scheme for single image super resolution based on deep convolutional neural network. IEEE Access, 6, 59963–59974.

    Article  Google Scholar 

  27. Esmaeilzehi, A., Ahmad, M. O., & Swamy, M. N. S. (2019). SRSubBandNet: A new deep learning scheme for single image super resolution based on subband reconstruction. In Proceedings of the IEEE International Symposium on Circuits and Systems. Sapporo, Japan.

    Google Scholar 

  28. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., et al. (2011). Large-scale FPGA-based convolutional networks. In R. Bekkerman, M. Bilenko, & J. Langford (Eds.), Machine learning on very large data sets (pp. 399–419). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  29. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202.

    Article  MATH  Google Scholar 

  30. Gallicchio, C., Micheli, A., & Pedrelli, L. (2017). Deep reservoir computing: A critical experimental analysis. Neurocomputing, 268, 87–99.

    Article  Google Scholar 

  31. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (Vol. 27, pp. 2672–2680).

    Google Scholar 

  32. Hastad, J. T. (1987). Computational limitations for small depth circuits. Cambridge, MA: MIT Press.

    Google Scholar 

  33. Hastad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1(2), 113–129.

    Article  MathSciNet  MATH  Google Scholar 

  34. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.

    Article  Google Scholar 

  35. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).

    Google Scholar 

  36. Hinton, G. E. (2007). To recognize shapes, first learn to generate images. Progress in Brain Research, 165, 535–547.

    Article  Google Scholar 

  37. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.

    Article  MathSciNet  MATH  Google Scholar 

  38. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148(3), 574–591.

    Article  Google Scholar 

  40. Kampffmeyer, M., Lokse, S., Bianchi, F. M., Livi, L., Salberg, A.-B., & Jenssen, R. (2019). Deep divergence-based approach to clustering. Neural Networks, 113, 91–101.

    Article  Google Scholar 

  41. Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., & Masquelier, T. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks, 99, 56–67.

    Article  Google Scholar 

  42. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada.

    Google Scholar 

  43. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (Vol. 25, pp. 1090–1098).

    Google Scholar 

  44. Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies for training deep neural networks. Journal of Machine Learning Research, 1, 1–40.

    MATH  Google Scholar 

  45. LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and timeseries. In The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.

    Google Scholar 

  46. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  47. Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989). Handwritten digit recognition with a back-propagation network. In D. S. Touretzky (Ed.), Advances in neural information processing systems (Vol. 2, pp. 396–404). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  48. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  49. Lee, H., Ekanadham, C., & Ng, A. Y. (2007). Sparse deep belief net model for visual area V2. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Advances in neural information processing systems (Vol. 20, pp. 873–880).

    Google Scholar 

  50. Lee, H., Grosse, R., Ranganath, R., Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In L. Bottou, & M. Littman (Eds.), Proceedings of the 26th Annual International Conference on Machine Learning (pp. 609–616). New York: ACM.

    Google Scholar 

  51. Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20(6), 1631–1649.

    Article  MathSciNet  MATH  Google Scholar 

  52. Le Roux, N., & Bengio, Y. (2010). Deep belief networks are compact universal approximators. Neural Computation, 22, 2192–2207.

    Article  MathSciNet  MATH  Google Scholar 

  53. Lin, M., Chen, Q., & Yan, S. (2014). Network in network. In Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada.

    Google Scholar 

  54. Ling, C. X., & Zhang, H. (2002). The representational power of discrete Bayesian networks. Journal of Machine Learning Research, 3, 709–721.

    MathSciNet  MATH  Google Scholar 

  55. Liu, J., Gong, M., & He, H. (2019). Deep associative neural network for associative memory based on unsupervised representation learning. Neural Networks, 113, 41–53.

    Article  Google Scholar 

  56. Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the International Conference on Machine Learning (Vol. 30).

    Google Scholar 

  57. Marquez, E. S., Hare, J. S., & Niranjan, M. (2018). Deep cascade learning. IEEE Transactions on Neural Networks and Learning Systems, 29(11), 5475–5485.

    Article  MathSciNet  Google Scholar 

  58. Masci, J., Meier, U., Ciresan, D., & Schmidhuber, J. (2011). Stacked convolutional autoencoders for hierarchical feature extraction. In Proceedings of the 21st International Conference on Artificial Neural Networks (Vol. 1, pp. 52–59). Espoo, Finland.

    Google Scholar 

  59. McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.

    Article  Google Scholar 

  60. Mhaskar, H., Liao, Q., & Poggio, T. (2016). Learning functions: When is deep better than shallow. CBMM Memo No. 045. https://arxiv.org/pdf/1603.00988v4.pdf.

  61. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

    Article  Google Scholar 

  62. Mohamed, A., Dahl, G., & Hinton, G. (2009). Deep belief networks for phone recognition. In Proceedings of NIPS Workshop on Deep Learning for Speech Recognition and Related Applications.

    Google Scholar 

  63. Montufar, G. F., Pascanu, R., Cho, K., & Bengio, Y. (2014). On the number of linear regions of deep neural networks. In Advances in neural information processing systems (Vol. 27, pp. 2924–2932).

    Google Scholar 

  64. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the International Conference on Machine Learning (ICML) (pp. 807–814).

    Google Scholar 

  65. Nitta, T. (2017). Resolution of singularities introduced by hierarchical structure in deep neural networks. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2282–2293.

    Article  MathSciNet  Google Scholar 

  66. O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., & Pfeiffer, M. (2013). Real-time classification and sensor fusion with a spiking deep belief network. Frontiers in Neuroscience, 7, 1–13.

    Google Scholar 

  67. Pape, L., Gomez, F., Ring, M., & Schmidhuber, J. (2011). Modular deep belief networks that do not forget. In Proceedings of IEEE International Joint Conference on Neural Networks (pp. 1191–1198).

    Google Scholar 

  68. Poon, H., & Domingos, P. (2011). Sum-product networks: A new deep architecture. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (pp. 337–346). Barcelona, Spain.

    Google Scholar 

  69. Ranzato, M. A., Poultney, C., Chopra, S., & LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In Advances in neural information processing systems (Vol. 19, 1137–1144).

    Google Scholar 

  70. Rippel, O., Snoek, J., & Adams, R. P. (2015). Spectral representations for convolutional neural networks. In Advances in neural information processing systems (Vol. 28, pp. 2449–2457).

    Google Scholar 

  71. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

    Article  MathSciNet  Google Scholar 

  72. Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann machines. In D. van Dyk, & M. Welling (Eds.), Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (PMLR Vol. 5, pp. 448–455).

    Google Scholar 

  73. Salakhutdinov, R., & Larochelle, H. (2010). Efficient learning of deep Boltzmann machines. In Y. W. Teh, & M. Titterington, (Eds.), Proceedings of the 13th Annual International Conference on Artificial Intelligence and Statistics (pp. 693–700).

    Google Scholar 

  74. Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history compression. Neural Computation, 4, 234–242.

    Article  Google Scholar 

  75. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Article  Google Scholar 

  76. Simard, P., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 7th International Conference on Document Analysis and Recognition (pp. 958–963).

    Google Scholar 

  77. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations (ICLR).

    Google Scholar 

  78. Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are universal approximators. Neural Computation, 20(11), 2629–2636.

    Article  MATH  Google Scholar 

  79. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9).

    Google Scholar 

  80. Szymanski, L., & McCane, B. (2014). Deep networks are effective encoders of periodicity. IEEE Transactions on Neural Networks and Learning Systems, 25(10), 1816–1827.

    Article  Google Scholar 

  81. Telgarsky, M. (2016). Benefits of depth in neural networks. In Proceedings of the 29th Annual Conference on Learning Theory (PMLR Vol. 49, pp. 1517–1539). New York, NY.

    Google Scholar 

  82. Veit, A., Wilber, M., & Belongie, S. (2016). Residual networks behave like ensembles of relatively shallow networks. In Advances in neural information processing systems (Vol. 29, pp. 550–558).

    Google Scholar 

  83. Vergari, A., Di Mauro, N., & Esposito, F. (2019). Visualizing and understanding sum-product networks. Machine Learning, 108, 551–573.

    Article  MathSciNet  MATH  Google Scholar 

  84. Waibel, A., Hanazawa, T., Hinton, G. E., Shikano, K., & Lang, K. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics Speech and Signal Processing, 37, 328–339.

    Article  Google Scholar 

  85. Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.

    Article  Google Scholar 

  86. Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International Conference on Machine Learning (Vol. 48, pp. 478–487). New York, NY.

    Google Scholar 

  87. Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neural Networks, 94, 103–114.

    Article  Google Scholar 

  88. Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In Proceedings of British Machine Vision Conference (pp. 87.1–87.12). Newcastle, UK.

    Google Scholar 

  89. Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. In Proceedings of the 1st International Conference on Learning Representations. Scottsdale, AZ.

    Google Scholar 

  90. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 818–833).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, KL., Swamy, M.N.S. (2019). Deep Learning. In: Neural Networks and Statistical Learning. Springer, London. https://doi.org/10.1007/978-1-4471-7452-3_24

Download citation

Publish with us

Policies and ethics