Advertisement

State Estimation Under Ordinary Impulsive Inputs

  • Alexander B. KurzhanskiEmail author
  • Alexander N. Daryin
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 468)

Abstract

In this section, we deal with the problem of state estimation for systems that develop under unknown but bounded ordinary impulsive inputs. This requires to treat the so-called “observation problem” which is solved here. However, the problem allows two types of settings—the one of guaranteed estimation calculated in advance, namely, before the arrival of the available measurement (as a worst case situation) and the one calculated after its arrival, on-line, as a closed-loop version [1, 3, 5, 6, 7, 8]

References

  1. 1.
    Baras, J.S., Bensoussan, A., James, M.R.: Dynamic observers and asymptotic limits of recursive filters, special case. SIAM J. Appl. Math. 48(5), 1147–1158 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Wiley-Interscience, New York (1958)zbMATHGoogle Scholar
  3. 3.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME 82(series D), 35–45 (1960)CrossRefGoogle Scholar
  4. 4.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)zbMATHGoogle Scholar
  5. 5.
    Krasovski, N.N.: The Theory of Control of Motion. Nauka, Moscow (1968)Google Scholar
  6. 6.
    Kurzhanski, A.B.: Control and Observation Under Uncertainty. Nauka, Moscow (1977)Google Scholar
  7. 7.
    Kurzhanski, A.B.: The problem of measurement feedback control. J. Appl. Math. Mech. 68(4), 487–501 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kurzhanski, A.B.: Identification - a theory of guaranteed estimates. In: Willems, J.C. (ed.) From Data to Model, pp. 135–214. Springer, Berlin (1989)CrossRefGoogle Scholar
  9. 9.
    Kurzhanski, A.B., Varaiya, P.: Dynamics and Control of Trajectory Tubes, p. 445. Birkhauser, Basel (2014)zbMATHGoogle Scholar
  10. 10.
    Milanese, M., Norton, J., Piet-Lahanier, H., Walter, I. (eds.): Bounding Approach to System Identification. Plenum Press, London (1996)zbMATHGoogle Scholar
  11. 11.
    Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)zbMATHGoogle Scholar
  12. 12.
    Stengel, R.F.: Optimal Control and Estimation. Dover Publications Inc., New York (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Alexander B. Kurzhanski
    • 1
    Email author
  • Alexander N. Daryin
    • 2
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Google ResearchZürichSwitzerland

Personalised recommendations