Closed-Loop Fast Controls

  • Alexander B. KurzhanskiEmail author
  • Alexander N. Daryin
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 468)


This chapter describes solutions to the earlier described problems of Parts I, II when treated within the realistic class of ordinary functions. These are fast controls—the piecewise-constant approximations of the ideal precursors.


  1. 1.
    Basar, T., Bernhard, P.: \(H^{\infty }\) Optimal Control and Related Mini max Design Problems. SCFA. Birkhäuser, Basel (1995)Google Scholar
  2. 2.
    Daryin, A.N., Kurzhanskii, A.B.: Control synthesis in a class of higher-order distributions. Differ. Equ. 43(11), 1479–1489 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Daryin, A.N., Kurzhanski, A.B.: Impulse control inputs and the theory of fast controls. In: Proceedings of 17th IFAC World Congress, pp. 4869–4874. IFAC, Seoul (2008)Google Scholar
  4. 4.
    Daryin, A.N., Minaeva, YuYu.: Approximation of impulse controls by physically realizable fast controls. Comput. Math. Model. 22(3), 278–287 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Daryin, A.N., Minaeva, YuYu.: Synthesis of impulse and fast controls under uncertainty. Dokl. Math. 84(3), 902–905 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana Univ. Math. J. 33(5), 773–797 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Volume I: Properties and Operations. Academic Press, New York (1964)zbMATHGoogle Scholar
  8. 8.
    Krasovski, N.N.: Rendezvous Game Problems. National technical information service. Springfield, Massachusetts (1971)Google Scholar
  9. 9.
    Krasovski, N.N., Subbotin, A.I.: Game-Theoretic Control Problems. Springer, New York (1988)CrossRefGoogle Scholar
  10. 10.
    Kurzhanski, A.B.: Pontryagin’s alternated integral and the theory of control synthesis. Proc. Steklov’s Math. Inst. 224, 234–248 (1999)Google Scholar
  11. 11.
    Kurzhanski, A.B.: The problem of measurement feedback control. J. Appl. Math. Mech. 68(4), 487–501 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kurzhanski, A.B., Daryin, A.N.: Dynamic programming for impulse controls. Ann. Rev. Control 32(2), 213–227 (2008)CrossRefGoogle Scholar
  13. 13.
    Kurzhanski, A.B., Daryin, A.N.: Attenuation of uncertain disturbances through fast control inputs. In: Proceedings of COSY-2011, pp. 49–52. Ohrid, Macedonia (2011)Google Scholar
  14. 14.
    Leitmann, G.: Optimality and reachability with feedback controls. In: Blaquiere, A., Leitmann, G. (eds.) Dynamical Syatems and Microphysics: Control Theory and Mechanics. Acdemic Press, Orlando (1982)Google Scholar
  15. 15.
    Neustadt, L.W.: Optimization, a moment problem and nonlinear programming. SIAM J. Control 2(1), 33–53 (1964)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)zbMATHGoogle Scholar
  17. 17.
    Stengel, R.F.: Optimal Control and Estimation. Dover Pub. Inc., New York (1994)zbMATHGoogle Scholar
  18. 18.
    Vostrikov, I.V., Daryin, A.N., Kurzhanski, A.B.: On the damping of a ladder-type vibration system subjected to uncertain perturbations. Differ. Equ. 42(11), 1524–1535 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Alexander B. Kurzhanski
    • 1
    Email author
  • Alexander N. Daryin
    • 2
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Google ResearchZürichSwitzerland

Personalised recommendations