Introduction: Why Impulses?

  • Alexander B. KurzhanskiEmail author
  • Alexander N. Daryin
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 468)


In this introductory chapter, we discuss the motivations for using impulse controls. As a mathematical justification of impulses, we present a simple variational problem that has solution only in the form of a delta function. We further consider the issue of control for a physical system that results in the same kind of variational problem, thus indicating that impulse controls do arise in real-world applications.


  1. 1.
    Bellman, R.: Stability Theory of Differential Equations. McGraqw-Hill, New York (1953)zbMATHGoogle Scholar
  2. 2.
    Bellman, R.: Introduction to the Mathematical Theory of Controlled Processes, vol 1/2, Academic Press, New York (1967/1971)Google Scholar
  3. 3.
    Bensoussan, A., Lions, J.L.: Contrôle Impulsionnel et Inéquations Quasi-variationnelles. Dunod, Paris (1982)zbMATHGoogle Scholar
  4. 4.
    Carter, T.E.: Optimal impulsive space trajectories based on linear equations. J. Optim. Theory Appl. 70(2), 277–297 (1991). Scholar
  5. 5.
    Carter, T., Humi, M.: A new approach to impulsive rendezvous near circular orbit. Celest. Mech. Dyn. Astron. 112(4), 385–426 (2012)Google Scholar
  6. 6.
    Carter, T.E., Brient, J.: Linearized impulsive rendezvous problem. J. Optim. Theory Appl. 86(3), 553–584 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  9. 9.
    Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–41 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Daryin, A.N., Kurzhanskii, A.B.: Control synthesis in a class of higher-order distributions. Differ. Equ. 43(11), 1479–1489 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Daryin, A.N., Kurzhanski, A.B.: Closed-loop impulse control of oscillating systems. In: Proceedings of the IFAC Workshop on Periodic Control Systems (PSYCO’07). IFAC, Saint-Petersburg (2007)Google Scholar
  13. 13.
    Daryin, A.N., Kurzhanski, A.B.: Impulse control inputs and the theory of fast controls. In: Proceedings of the 17th IFAC World Congress, pp. 4869–4874. IFAC, Seoul (2008)Google Scholar
  14. 14.
    Daryin, A.N., Minaeva, Yu.Yu.: Approximation of impulse controls by physically realizable fast controls. Comput. Math. Model. 22(3), 278–287 (2011)Google Scholar
  15. 15.
    Daryin, A.N., Digailova, I.A., Kurzhanski, A.B.: Output feedback strategies for systems with impulsive and fast controls. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 2801–2806. Shanghai (2009)Google Scholar
  16. 16.
    Daryin, A.N., Kurzhanski, A.B., Minaeva, Yu.Yu.: On the theory of fast controls under disturbances. In: Proceedings of the 18th IFAC World Congress, pp. 3486–3491. IFAC, Milano (2011)Google Scholar
  17. 17.
    Dykhta, V.A., Samsonuk, O.N.: Optimal Impulsive Control with Applications. Fizmatlit, Moscow (2003)Google Scholar
  18. 18.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)CrossRefGoogle Scholar
  19. 19.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)zbMATHGoogle Scholar
  20. 20.
    Gelfand, I.M., Shilov, G.E.: Generalized Functions, Volume 1: Properties and Operations. Dover, New York (1991)Google Scholar
  21. 21.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)zbMATHGoogle Scholar
  22. 22.
    Krasovski, N.N.: On a problem of optimal regulation. Prikl. Math. Mech. 21(5), 670–677 (1957). In RussianGoogle Scholar
  23. 23.
    Krasovski, N.N.: The Theory of Control of Motion. Nauka, Moscow (1968)Google Scholar
  24. 24.
    Krasovski, N.N., Subbotin, A.I.: Game-Theoretic Control Problems. Springer, New York (1988)CrossRefGoogle Scholar
  25. 25.
    Kurzhanski, A.B.: Impulse control synthesis, fast controls and hybrid system modeling. Plenary lecture, IFAC Symposium ALCOS-2007, St. Petersburg (2007)Google Scholar
  26. 26.
    Kurzhanski, A.B., Daryin, A.N.: Dynamic programming for impulse controls. Annu. Rev. Control 32(2), 213–227 (2008)CrossRefGoogle Scholar
  27. 27.
    Kurzhanski, A.B., Daryin, A.N.: Attenuation of uncertain disturbances through fast control inputs. In: Proceedings of the COSY-2011, pp. 49–52. Ohrid, Macedonia (2011)Google Scholar
  28. 28.
    Kurzhanski, A.B., Osipov, Yu.S: On controlling linear systems through generalized controls. Differ. Uravn. 5(8), 1360–1370 (1969). (Russian)Google Scholar
  29. 29.
    Kurzhanski, A.B., Varaiya, P.: Dynamics and Control of Trajectory Tubes. Theory and Computation. Birkhäuser, Boston (2014)Google Scholar
  30. 30.
    Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)zbMATHGoogle Scholar
  31. 31.
    Leitmann, G.: The Calculus of Variations and Optimal Control. An Introduction. Plenum Press, New York (1981)CrossRefGoogle Scholar
  32. 32.
    Miller, B.M., Rubinovich, E.Ya.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer, New York (2003)Google Scholar
  33. 33.
    Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integr. Equ. 8, 269–288 (1995)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Neustadt, L.W.: Optimization, a moment problem and nonlinear programming. SIAM J. Control 2(1), 33–53 (1964)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Pontryagin, L.S.: On linear differential games II. Dokl. AN SSSR 175(4), 910–912 (1967). (Russian)Google Scholar
  36. 36.
    Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (2005)zbMATHGoogle Scholar
  37. 37.
    Subbotin, A.I.: Generalized Solutions of First-Order PDE’s. The Dynamic Optimization Perspective. SCFA. Birkhäuser, Boston (1995)Google Scholar
  38. 38.
    Vladimirov, V.S.: Generalized Functions in Mathematical Physics. Nauka, Moscow (1979). (Russian)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Alexander B. Kurzhanski
    • 1
    Email author
  • Alexander N. Daryin
    • 2
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Google ResearchZürichSwitzerland

Personalised recommendations