Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 468))

  • 412 Accesses

Abstract

In this introductory chapter, we discuss the motivations for using impulse controls. As a mathematical justification of impulses, we present a simple variational problem that has solution only in the form of a delta function. We further consider the issue of control for a physical system that results in the same kind of variational problem, thus indicating that impulse controls do arise in real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellman, R.: Stability Theory of Differential Equations. McGraqw-Hill, New York (1953)

    MATH  Google Scholar 

  2. Bellman, R.: Introduction to the Mathematical Theory of Controlled Processes, vol 1/2, Academic Press, New York (1967/1971)

    Google Scholar 

  3. Bensoussan, A., Lions, J.L.: Contrôle Impulsionnel et Inéquations Quasi-variationnelles. Dunod, Paris (1982)

    MATH  Google Scholar 

  4. Carter, T.E.: Optimal impulsive space trajectories based on linear equations. J. Optim. Theory Appl. 70(2), 277–297 (1991). https://doi.org/10.1007/BF00940627

    Article  MathSciNet  MATH  Google Scholar 

  5. Carter, T., Humi, M.: A new approach to impulsive rendezvous near circular orbit. Celest. Mech. Dyn. Astron. 112(4), 385–426 (2012)

    Google Scholar 

  6. Carter, T.E., Brient, J.: Linearized impulsive rendezvous problem. J. Optim. Theory Appl. 86(3), 553–584 (1995)

    Article  MathSciNet  Google Scholar 

  7. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  Google Scholar 

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  9. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–41 (1983)

    Article  MathSciNet  Google Scholar 

  10. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)

    Article  MathSciNet  Google Scholar 

  11. Daryin, A.N., Kurzhanskii, A.B.: Control synthesis in a class of higher-order distributions. Differ. Equ. 43(11), 1479–1489 (2007)

    Article  MathSciNet  Google Scholar 

  12. Daryin, A.N., Kurzhanski, A.B.: Closed-loop impulse control of oscillating systems. In: Proceedings of the IFAC Workshop on Periodic Control Systems (PSYCO’07). IFAC, Saint-Petersburg (2007)

    Google Scholar 

  13. Daryin, A.N., Kurzhanski, A.B.: Impulse control inputs and the theory of fast controls. In: Proceedings of the 17th IFAC World Congress, pp. 4869–4874. IFAC, Seoul (2008)

    Google Scholar 

  14. Daryin, A.N., Minaeva, Yu.Yu.: Approximation of impulse controls by physically realizable fast controls. Comput. Math. Model. 22(3), 278–287 (2011)

    Google Scholar 

  15. Daryin, A.N., Digailova, I.A., Kurzhanski, A.B.: Output feedback strategies for systems with impulsive and fast controls. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 2801–2806. Shanghai (2009)

    Google Scholar 

  16. Daryin, A.N., Kurzhanski, A.B., Minaeva, Yu.Yu.: On the theory of fast controls under disturbances. In: Proceedings of the 18th IFAC World Congress, pp. 3486–3491. IFAC, Milano (2011)

    Google Scholar 

  17. Dykhta, V.A., Samsonuk, O.N.: Optimal Impulsive Control with Applications. Fizmatlit, Moscow (2003)

    Google Scholar 

  18. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)

    Book  Google Scholar 

  19. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  20. Gelfand, I.M., Shilov, G.E.: Generalized Functions, Volume 1: Properties and Operations. Dover, New York (1991)

    Google Scholar 

  21. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  22. Krasovski, N.N.: On a problem of optimal regulation. Prikl. Math. Mech. 21(5), 670–677 (1957). In Russian

    Google Scholar 

  23. Krasovski, N.N.: The Theory of Control of Motion. Nauka, Moscow (1968)

    Google Scholar 

  24. Krasovski, N.N., Subbotin, A.I.: Game-Theoretic Control Problems. Springer, New York (1988)

    Book  Google Scholar 

  25. Kurzhanski, A.B.: Impulse control synthesis, fast controls and hybrid system modeling. Plenary lecture, IFAC Symposium ALCOS-2007, St. Petersburg (2007)

    Google Scholar 

  26. Kurzhanski, A.B., Daryin, A.N.: Dynamic programming for impulse controls. Annu. Rev. Control 32(2), 213–227 (2008)

    Article  Google Scholar 

  27. Kurzhanski, A.B., Daryin, A.N.: Attenuation of uncertain disturbances through fast control inputs. In: Proceedings of the COSY-2011, pp. 49–52. Ohrid, Macedonia (2011)

    Google Scholar 

  28. Kurzhanski, A.B., Osipov, Yu.S: On controlling linear systems through generalized controls. Differ. Uravn. 5(8), 1360–1370 (1969). (Russian)

    Google Scholar 

  29. Kurzhanski, A.B., Varaiya, P.: Dynamics and Control of Trajectory Tubes. Theory and Computation. Birkhäuser, Boston (2014)

    Google Scholar 

  30. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)

    MATH  Google Scholar 

  31. Leitmann, G.: The Calculus of Variations and Optimal Control. An Introduction. Plenum Press, New York (1981)

    Book  Google Scholar 

  32. Miller, B.M., Rubinovich, E.Ya.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer, New York (2003)

    Google Scholar 

  33. Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integr. Equ. 8, 269–288 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Neustadt, L.W.: Optimization, a moment problem and nonlinear programming. SIAM J. Control 2(1), 33–53 (1964)

    MathSciNet  MATH  Google Scholar 

  35. Pontryagin, L.S.: On linear differential games II. Dokl. AN SSSR 175(4), 910–912 (1967). (Russian)

    Google Scholar 

  36. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  37. Subbotin, A.I.: Generalized Solutions of First-Order PDE’s. The Dynamic Optimization Perspective. SCFA. Birkhäuser, Boston (1995)

    Google Scholar 

  38. Vladimirov, V.S.: Generalized Functions in Mathematical Physics. Nauka, Moscow (1979). (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Kurzhanski .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurzhanski, A.B., Daryin, A.N. (2020). Introduction: Why Impulses? . In: Dynamic Programming for Impulse Feedback and Fast Controls. Lecture Notes in Control and Information Sciences, vol 468. Springer, London. https://doi.org/10.1007/978-1-4471-7437-0_1

Download citation

Publish with us

Policies and ethics