Skip to main content

Standard Methods for Standard Options

  • Chapter
  • First Online:
  • 3634 Accesses

Part of the book series: Universitext ((UTX))

Abstract

This chapter elaborates the numerical solution of the Black-Scholes equation for European plain-vanilla options, and of the corresponding inequalities for the American-style case. Following the Black-Scholes model, this chapter is confined to constant coefficients. This allows to solve an equivalent partial-differential equation of the simplest parabolic type. Several finite-difference schemes are explained, as well as numerical stability. Boundary conditions are introduced, which lead to obstacle problems in the American-style case and to a formulation as linear complementarity problem. The solution of the free-boundary problem is tackled by the Brennan-Schwartz approach. Error control and accuracy are discussed. The final part of this chapter is devoted to analytic methods. This includes the interpolation method, the quadratic approximation, the analytic method of lines, and quadrature methods for an integral representation. Finally we discuss criteria for the comparison of different methods and for judging their efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    But the corresponding solutions V (S, t) and their early-exercise structure will be different. The Notes and Comments summarize how to correctly compensate for a discrete dividend payment.

  2. 2.

    Too large values of | a | or b can lead to underflow or overflow when evaluating the exponential function.

  3. 3.

    The zeros in the corner of the matrix G symbolize the triangular zero structure of (4.13).

  4. 4.

    For S = 0 the PDE is no longer parabolic.

  5. 5.

    Of course, the holder may wish to sell the option.

  6. 6.

    The final balance for a put after exercising is Ker(Tt). The reader is encouraged to show that holding is less profitable (Seδ(Tt) < Ker(Tt)), at least for small r(Tt). When a discrete dividend is paid, the stopping region is not necessarily connected ( Exercise 4.1b).

  7. 7.

    Up to localization.

  8. 8.

    This is illustrated in Topic 9 of the Topics fCF.

  9. 9.

    Notation: In this Sect. 4.6.2, x does not have the meaning of transformation (4.3), and r not that of an interest rate, and y is no PDE solution. Here, \(x,y \in \mathbb{R}^{m-1}\).

  10. 10.

    For the KKT (Karush-Kuhn-Tucker or Kuhn-Tucker) theory we refer to [348, 350]. In our context, m − 1.

  11. 11.

    Successive overrelaxation, SOR. For an introduction to classic iterative methods for the solution of systems of linear equations Ax = b we refer to Appendix C.2.

  12. 12.

    The S-interval must be large enough, S 1 < S f.

  13. 13.

    With m = 20000, our best result was 1.8816935.

  14. 14.

    The latter situation might cause some uncertainty on the costs.

  15. 15.

    The files BENCHMARK00 for δ = 0 and BENCHMARK01 for δ = 0. 1 can be found on www.compfin.de.

  16. 16.

    All of the above methods were implemented in FORTRAN (F90 compiler) and run on a DS20 processor.

    Fig. 4.19
    figure 19

    Computing times and RMS errors of several methods, see the text. Points mark calculated RMS errors; corresponding points are connected by lines

  17. 17.

    For tree methods, dividends are discussed in Appendix D.2.

  18. 18.

    As already mentioned in Sect. 4.7, the risk of having chosen an inappropriate model is mostly larger than the risk of inaccurate digits.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. With Formulas, Graphs, and Mathematical Tables. Dover, New York (1968)

    MATH  Google Scholar 

  2. Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  3. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  4. AitSahlia, F., Carr, P.: American options: a comparison of numerical methods. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 67–87. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  5. Alfonsi, A.: On the discretization schemes for the CIR (and Besselsquared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53, 1–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Almendral, A., Oosterlee, C.W.: Highly accurate evaluation of European and American options under the Variance Gamma process. J. Comput. Finance 10(1), 21–42 (2006)

    Article  Google Scholar 

  8. Andersen, L., Andreasen, J.: Jump diffusion process: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)

    Article  MATH  Google Scholar 

  9. Andersen, L., Broadie, M.: Primal-dual simulation algorithm for pricing multidimensional American options. Manag. Sci. 50, 1222–1234 (2004)

    Article  Google Scholar 

  10. Andersen, L.B.G., Brotherton-Ratcliffe, R.: The equity option volatility smile: an implicit finite-difference approach. J. Comput. Finance 1(2), 5–38 (1997/1998)

    Google Scholar 

  11. Ané, T., Geman, H.: Order flow, transaction clock, and normality of asset returns. J. Finance 55, 2259–2284 (2000)

    Article  Google Scholar 

  12. Arnold, L.: Stochastic Differential Equations (Theory and Applications). Wiley, New York (1974)

    MATH  Google Scholar 

  13. Arouna, B.: Robbins-Monro algorithms and variance reduction in finance. J. Comput. Finance 7(2), 35–61 (2003)

    Article  Google Scholar 

  14. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Avellaneda, M.: Quantitative Modeling of Derivative Securities. From Theory to Practice. Chapman & Hall, Boca Raton (2000)

    MATH  Google Scholar 

  16. Avellaneda, M., Levy, A., Parás, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73–88 (1995)

    Article  Google Scholar 

  17. Avellaneda, M., Parás, A.: Dynamic hedging portfolios for derivative securities in the presence of large transaction costs. Appl. Math. Finance 1, 165–194 (1994)

    Article  Google Scholar 

  18. Avellaneda, M., Parás, A.: Managing the volatility risk of derivative securities: the Lagrangian volatility model. Appl. Math. Finance 3, 21–53 (1996)

    Article  MATH  Google Scholar 

  19. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Oxford Science, Oxford (2001)

    MATH  Google Scholar 

  20. Ball, C.A., Roma, A.: Stochastic volatility option pricing. J. Financ. Quant. Anal. 29, 589–607 (1994)

    Article  Google Scholar 

  21. Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance theory. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 2–21. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  22. Barles, G., Burdeau, J., Romano, M., Samsœn, N.: Critical stock prices near expiration. Math. Finance 5, 77–95 (1995)

    Article  MATH  Google Scholar 

  23. Barles, G., Daher, Ch., Romano, M.: Convergence of numerical schemes for parabolic equations arising in finance theory. Math. Models Methods Appl. Sci. 5, 125–143 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stochast. 2, 369–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stochast. 2, 41–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barone-Adesi, G., Whaley, R.E.: Efficient analytic approximation of American option values. J. Finance 42, 301–320 (1987)

    Article  Google Scholar 

  27. Barone-Adesi, G., Whaley, R.E.: On the valuation of American put options on dividend-paying stocks. Adv. Futures Options Res. 3, 1–13 (1988)

    Google Scholar 

  28. Barraquand, J., Pudet, T.: Pricing of American path-dependent contingent claims. Math. Finance 6, 17–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  30. Bates, D.: Jumps and stochastic volatility: the exchange rate processes implicit in Deutschmark options. Rev. Financ. Stud. 9, 69–107 (1996)

    Article  Google Scholar 

  31. Baxter, M., Rennie, A.: Financial Calculus. An Introduction to Derivative Pricing. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  32. Behrends, E.: Introduction to Markov Chains. Vieweg, Braunschweig (2000)

    Book  MATH  Google Scholar 

  33. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  34. Ben Hamida, S., Cont, R.: Recovering volatility from option prices by evolutionary optimization. J. Comput. Finance 8(4), 43–76 (2005)

    Article  Google Scholar 

  35. Bensoussan, A.: On the theory of option pricing. Acta Appl. Math. 2, 139–158 (1984)

    MathSciNet  MATH  Google Scholar 

  36. Berridge, S.J., Schumacher, J.M.: Pricing high-dimensional American options using local consistency conditions. In: Appleby, J.A.D., et al. (eds.) Numerical Methods for Finance. Chapman & Hall, Boca Raton (2008)

    Google Scholar 

  37. Billingsley, P.: Probability and Measure. Wiley, New York (1979)

    MATH  Google Scholar 

  38. Bischi, G.I., Sushko, I. (eds.): Dynamic Modelling in Economics & Finance. Special Issue of Chaos, Solitons and Fractals 29(3) (2006)

    Google Scholar 

  39. Bischi, G.I., Valori, V.: Nonlinear effects in a discrete-time dynamic model of a stock market. Chaos Solitons Fractals 11, 2103–2121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, Oxford (1998)

    Book  MATH  Google Scholar 

  41. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  42. Blomeyer, E.C.: An analytic approximation for the American put price for options with dividends. J. Financ. Quant. Anal. 21, 229–233 (1986)

    Article  Google Scholar 

  43. Bouchaud, J.-P., Potters, M.: Theory of Financial Risks. From Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  44. Bouleau, N.: Martingales et Marchés Financiers. Edition Odile Jacob, Paris (1998)

    Book  Google Scholar 

  45. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  46. Boyle, P.P.: Options: a Monte Carlo approach. J. Financ. Econ. 4, 323–338 (1977)

    Article  Google Scholar 

  47. Boyle, P., Broadie, M., Glasserman, P.: Monte Carlo methods for security pricing. J. Econ. Dyn. Control 21, 1267–1321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Boyle, P.P., Evnine, J., Gibbs, S.: Numerical evaluation of multivariate contingent claims. Rev. Financ. Stud. 2, 241–250 (1989)

    Article  Google Scholar 

  49. Brachet, M.-E., Taflin, E., Tcheou, J.M.: Scaling transformation and probability distributions for time series. Chaos Solitons Fractals 11, 2343–2348 (2000)

    Article  MATH  Google Scholar 

  50. Brandimarte, P.: Numerical Methods in Finance and Economics. A MATLAB-Based Introduction. Wiley, Hoboken (2006)

    Book  MATH  Google Scholar 

  51. Breen, R.: The accelerated binomial option pricing model. J. Financ. Quant. Anal. 26, 153–164 (1991)

    Article  Google Scholar 

  52. Brennan, M.J., Schwartz, E.S.: The valuation of American put options. J. Finance 32, 449–462 (1977)

    Article  Google Scholar 

  53. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  54. Brent, R.P.: On the periods of generalized Fibonacci recurrences. Math. Comput. 63, 389–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  55. Briani, M., La Chioma, C., Natalini, R.: Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numer. Math. 98, 607–646 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Broadie, M., Detemple, J.: American option valuation: new bounds, approximations, and a comparison of existing methods. Rev. Financ. Stud. 9, 1211–1250 (1996)

    Article  Google Scholar 

  57. Broadie, M., Detemple, J.: Recent advances in numerical methods for pricing derivative securities. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 43–66. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  58. Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dyn. Control 21, 1323–1352 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Broadie, M., Glasserman, P.: A stochastic mesh method for pricing high-dimensional American options. J. Comput. Finance 7(4), 35–72 (2004)

    Article  Google Scholar 

  60. Brock, W.A., Hommes, C.H.: Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22, 1235–1274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  61. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J. Appl. Math. 6, 76–90 (1970)

    Article  MATH  Google Scholar 

  62. Bruti-Liberati, N., Platen, E.: On weak predictor-corrector schemes for jump-diffusion processes in finance. Research Paper, University of Sydney (2006)

    MATH  Google Scholar 

  63. Bunch, D.S., Johnson, H.: A simple and numerically efficient valuation method for American puts using a modified Geske-Johnson approach. J. Finance 47, 809–816 (1992)

    Article  Google Scholar 

  64. Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgaged-backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance 1(1), 27–46 (1997)

    Article  Google Scholar 

  65. Carmona, R., Durrleman, V.: Generalizing the Black–Scholes formula to multivariate contingent claims. J. Comput. Finance 9(2), 43–67 (2005)

    Article  Google Scholar 

  66. Carr, P., Faguet, D.: Fast accurate valuation of American options. Working paper, Cornell University (1995)

    Google Scholar 

  67. Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Finance 13, 345–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Carr, P., Madan, D.B.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999)

    Article  Google Scholar 

  69. Carr, P., Wu, L.: Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–141 (2004)

    Article  Google Scholar 

  70. Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insur. Math. Econ. 19, 19–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  71. Cash, J.R.: Two new finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 21, 433–446 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  72. Chan, T.F., Golub, G.H., LeVeque, R.J.: Algorithms for computing the sample variance: analysis and recommendations. Am. Stat. 37, 242–247 (1983)

    MathSciNet  MATH  Google Scholar 

  73. Chen, S.-H. (ed.): Genetic Algorithms and Genetic Programming in Computational Finance. Kluwer, Boston (2002)

    Google Scholar 

  74. Chen, X., Chadam, J.: Analytical and numerical approximations for the early exercise boundary for American put options. Dyn. Continuous Discrete Impulsive Syst. A 10, 649–660 (2003)

    MathSciNet  MATH  Google Scholar 

  75. Chen, X., Chadam, J.: A mathematical analysis of the optimal exercise boundary for American put options. SIAM J. Math. Anal. 38, 1613–1641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Chiarella, C., Dieci, R., Gardini, L.: Speculative behaviour and complex asset price dynamics. In: Bischi, G.I. (ed.) Proceedings Urbino 2000 (2000)

    Google Scholar 

  77. Choi, H.I., Heath, D., Ku, H.: Valuation and hedging of options with general payoff under transaction costs. J. Kor. Math. Soc. 41, 513–533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Chung, K.L., Williams, R.J.: Introduction to Stochastic Integration. Birkhäuser, Boston (1983)

    Book  MATH  Google Scholar 

  79. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. II. Elsevier/North-Holland, Amsterdam (1991)

    Google Scholar 

  80. Ciarlet, P., Lions, J.L.: Finite Difference Methods (Part 1) Solution of Equations in \(\mathbb{R}^{n}\). North-Holland/Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  81. Clarke, N., Parrot, A.K.: Multigrid for American option pricing with stochastic volatility. Appl. Math. Finance 6, 177–179 (1999)

    Article  MATH  Google Scholar 

  82. Clewlow, L., Strickland, C.: Implementing Derivative Models. Wiley, Chichester (1998)

    Google Scholar 

  83. Coleman, T.F., Li, Y., Verma, Y.: A Newton method for American option pricing. J. Comput. Finance 5(3), 51–78 (2002)

    Article  Google Scholar 

  84. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  85. Cont, R., Voltchkova, E.: Finite difference methods for option pricing in jump-diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  86. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  87. Cox, J.C., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)

    Article  MATH  Google Scholar 

  88. Cox, J.C., Rubinstein, M.: Options Markets. Prentice Hall, Englewood Cliffs (1985)

    Google Scholar 

  89. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  90. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  91. Crank, J.C., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conductive type. Proc. Camb. Philos. Soc. 43, 50–67 (1947)

    Article  MATH  Google Scholar 

  92. Cryer, C.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  93. Cyganowski, S., Kloeden, P., Ombach, J.: From Elementary Probability to Stochastic Differential Equations with MAPLE. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  94. Dahlbokum, A.: Empirical performance of option pricing models based on time-changed Lévy processes. Available at SSRN: http://ssrn.com/abstract=1675321 (2010)

  95. Dai, M.: A closed-form solution for perpetual American floating strike lookback options. J. Comput. Finance 4(2), 63–68 (2000)

    Article  MathSciNet  Google Scholar 

  96. Dai, T.-S., Lyuu, Y.-D.: The bino-trinomial tree: a simple model for efficient and accurate option pricing. J. Deriv. 17, 7–24 (2010)

    Article  Google Scholar 

  97. Dana, R.-A., Jeanblanc, M.: Financial Markets in Continuous Time. Springer, Berlin (2003)

    MATH  Google Scholar 

  98. Dempster, M.A.H., Hutton, J.P.: Pricing American stock options by linear programming. Math. Finance 9, 229–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  99. Dempster, M.A.H., Hutton, J.P., Richards, D.G.: LP valuation of exotic American options exploiting structure. J. Comput. Finance 2(1), 61–84 (1998)

    Article  Google Scholar 

  100. Derman, E., Kani, I.: Riding on a smile. Risk 7, 32–39 (1994)

    Google Scholar 

  101. Detemple, J.: American options: symmetry properties. In: Jouini, E., et al. (eds.) Option Pricing, Interest Rates and Risk Management. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  102. Deutsch, H.-P.: Derivatives and Internal Models. Palgrave, Houndmills (2002)

    Book  Google Scholar 

  103. Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)

    Book  MATH  Google Scholar 

  104. d’Halluin, Y., Forsyth, P.A., Labahn, G.: A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  105. d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  106. Dieci, R., Bischi, G.-I., Gardini, L.: From bi-stability to chaotic oscillations in a macroeconomic model. Chaos Solitons Fractals 12, 805–822 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  107. Doeblin, W.: Sur l’équation de Kolmogorov (1940)

    MATH  Google Scholar 

  108. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  109. Dowd, K.: Beyond Value at Risk: The New Science of Risk Management. Wiley, Chichester (1998)

    MATH  Google Scholar 

  110. Duffie, D.: Dynamic Asset Pricing Theory, 2nd edn. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  111. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  112. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  113. Eberlein, E., Frey, R., Kalkbrener, M., Overbeck, L.: Mathematics in financial risk management. Jahresber. DMV 109, 165–193 (2007)

    MathSciNet  MATH  Google Scholar 

  114. Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1, 281–299 (1995)

    Article  MATH  Google Scholar 

  115. Egloff, D.: Monte Carlo algorithms for optimal stopping and statistical learning. Ann. Appl. Probab. 15, 1396–1432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  116. Ehrhardt, M. (ed.): Nonlinear Models in Mathematical Finance. New Research Trends in Option Pricing. Nova Science, Hauppauge (2008)

    MATH  Google Scholar 

  117. Ekström, E., Lötstedt, P., Tysk, J.: Boundary values and finite difference methods for the single factor term structure equation. Appl. Math. Finance 16, 253–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  118. El Karoui, N., Jeanblanc-Picqué, M., Shreve, S.E.: Robustness of the Black and Scholes formula. Math. Finance 8, 93–126 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  119. Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston (1982)

    MATH  Google Scholar 

  120. Elliott, R.J., Kopp, P.E.: Mathematics of Financial Markets. Springer, New York (1999)

    Book  MATH  Google Scholar 

  121. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  122. Ender, M.: Model risk in option pricing. www.risknet.de/risknet-elibrary/kategorien/market-risk (2008)

  123. Epps, T.W.: Pricing Derivative Securities. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  124. Faigle, U., Schrader, R.: On the Convergence of Stationary Distributions in Simulated Annealing Algorithms. Inf. Process. Lett. 27, 189–194 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  125. Fang, F., Oosterlee, C.W.: A novel option pricing method based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31, 826–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  126. Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by fourier-cosine series expansions. Numer. Math. 114, 27–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  127. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1950)

    MATH  Google Scholar 

  128. Fengler, M.R.: Semiparametric Modeling of Implied Volatility. Springer, Berlin (2005)

    MATH  Google Scholar 

  129. Figlewski, S., Gao, B.: The adaptive mesh model: a new approach to efficient option pricing. J. Financ. Econ. 53, 313–351 (1999)

    Article  Google Scholar 

  130. Fishman, G.S.: Monte Carlo. Concepts, Algorithms, and Applications. Springer, New York (1996)

    Book  MATH  Google Scholar 

  131. Fisz, M.: Probability Theory and Mathematical Statistics. Wiley, New York (1963)

    MATH  Google Scholar 

  132. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction to Discrete Time. de Gruyter, Berlin (2002)

    Book  MATH  Google Scholar 

  133. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  134. Forsyth, P.A., Vetzal, K.R.: Numerical methods for nonlinear PDEs in finance. In: Duan, J.-C., Härdle, W.K., Gentle, J.E. (eds.) Handbook of Computational Finance, pp. 503–528. Springer, Berlin (2012)

    Chapter  Google Scholar 

  135. Forsyth, P.A., Vetzal, K.R., Zvan, R.: A finite element approach to the pricing of discrete lookbacks with stochastic volatility. Appl. Math. Finance 6, 87–106 (1999)

    Article  MATH  Google Scholar 

  136. Forsyth, P.A., Vetzal, K.R., Zvan, R.: Convergence of numerical methods for valuing path-dependent options using interpolation. Rev. Deriv. Res. 5, 273–314 (2002)

    Article  MATH  Google Scholar 

  137. Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L., Touzi, N.: An application of Malliavin calculus to Monte Carlo methods in finance. Finance Stochast. 3, 391–412 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  138. Franke, J., Härdle, W., Hafner, C.M.: Statistics of Financial Markets. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  139. Freedman, D.: Brownian Motion and Diffusion. Holden Day, San Francisco (1971)

    MATH  Google Scholar 

  140. Frey, R., Patie, P.: Risk management for derivatives in illiquid markets: a simulation-study. In: Sandmann, K., Schönbucher, P. (eds.) Advances in Finance and Stochastics. Springer, Berlin (2002)

    Google Scholar 

  141. Frey, R., Stremme, A.: Market volatility and feedback effects from dynamic hedging. Math. Finance 7, 351–374 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  142. Frutos, J. de: A spectral method for bonds. Comput. Oper. Res. 35, 64–75 (2008)

    Google Scholar 

  143. Fu, M.C., et al.: Pricing American options: a comparison of Monte Carlo simulation approaches. J. Comput. Finance 4(3), 39–88 (2001)

    Article  Google Scholar 

  144. Fusai, G., Sanfelici, S., Tagliani, A.: Practical problems in the numerical solution of PDEs in finance. Rend. Studi Econ. Quant. 2001, 105–132 (2002)

    MathSciNet  Google Scholar 

  145. Gander, M.J., Wanner, G.: From Euler, Ritz, and Galerkin to modern computing. SIAM Rev. 54, 627–666 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  146. Geman, H., et al., eds.: Mathematical Finance. Bachelier Congress 2000. Springer, Berlin (2002)

    Google Scholar 

  147. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer, New York (1998)

    Book  MATH  Google Scholar 

  148. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  149. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71, 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  150. Geske, R., Johnson, H.E.: The American put option valued analytically. J. Finance 39, 1511–1524 (1984)

    Article  Google Scholar 

  151. Giles, M.: Variance reduction through multilevel Monte Carlo path calculations. In: Appleby, J.A.D., et al. (eds.) Numerical Methods for Finance. Chapman & Hall, Boca Raton (2008)

    Google Scholar 

  152. Giles, M., Glasserman, P.: Smoking adjoints: fast Monte Carlo methods. Risk 19, 88–92 (2006)

    Google Scholar 

  153. Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice. Chapman & Hall, Boca Raton (1996)

    Google Scholar 

  154. Glaser, J., Heider, P.: Arbitrage-free approximation of call price surfaces and input data risk. Quant. Finance 12, 61–73 (2012). doi:10.1080/14697688.2010.514005

    Article  MathSciNet  MATH  Google Scholar 

  155. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)

    MATH  Google Scholar 

  156. Glover, K.J., Duck, P.W., Newton, D.P.: On nonlinear models of markets with finite liquidity: some cautionary notes. SIAM J. Appl. Math. 70, 3252–3271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  157. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  158. Goodman, J., Ostrov, D.N.: On the early exercise boundary of the American put option. SIAM J. Appl. Math. 62, 1823–1835 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  159. Grandits, P.: Frequent hedging under transaction costs and a nonlinear Fokker-Planck PDE. SIAM J. Appl. Math. 62, 541–562 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  160. Grüne, L., Kloeden, P.E.: Pathwise approximation of random ODEs. BIT 41, 710–721 (2001)

    Article  MATH  Google Scholar 

  161. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  162. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Springer Series in Computational Mathematics, vol. 18. Berlin, Springer (1992)

    Google Scholar 

  163. Haentjens, T., in ’t Hout, K.: ADI finite difference discretization of the Heston-Hull-White PDE. In: Simos, T.E., et al. (eds.) Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1281, pp. 1995–1999 (2010)

    Article  Google Scholar 

  164. Häggström, O.: Finite Markov Chains and Algorithmic Applications. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  165. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  166. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  167. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen, London (1964)

    Book  MATH  Google Scholar 

  168. Hämmerlin, G., Hoffmann, K.-H.: Numerical Mathematics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  169. Han, H., Wu, X.: A fast numerical method for the Black–Scholes equation of American options. SIAM J. Numer. Anal. 41, 2081–2095 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  170. Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  171. Hart, J.F.: Computer Approximations. Wiley, New York (1968)

    MATH  Google Scholar 

  172. Haug, E.G.: The Complete Guide to Option Pricing Formulas, 2nd edn. 2007. McGraw-Hill, New York (1998)

    Google Scholar 

  173. He, C., Kennedy, J.S., Coleman, T., Forsyth, P.A., Li, Y., Vetzal, K.: Calibration and hedging under jump diffusion. Rev. Deriv. Res. 9, 1–35 (2006)

    Article  MATH  Google Scholar 

  174. Heider, P.: A condition number for the integral representation of American options. J. Comput. Finance 11(2), 95–103 (2007/08)

    Google Scholar 

  175. Heider, P.: A second-order Nyström-type discretization for the early-exercise curve of American put options. Int. J. Comput. Math. 86, 982–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  176. Heider, P.: Numerical methods for non-linear Black–Scholes equations. Appl. Math. Finance 17, 59–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  177. Heider, P., Schaeling, D.: Numerical methods for American options in nonlinear Black–Scholes models. Preprint, Universität Köln (2010)

    Google Scholar 

  178. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  179. Heston, S., Zhou, G.: On the rate of convergence of discrete-time contingent claims. Math. Finance 10, 53–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  180. Higham, D.J.: An algorithmic introduction to numerical solution of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  181. Higham, D.J.: An Introduction to Financial Option Valuation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  182. Higham, D.J., Kloeden, P.E.: Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math. 101, 101–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  183. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  184. Higham, N.J.: Computing the nearest correlation matrix — a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  185. Hilber, N., Matache, A.-M., Schwab, C.: Sparse wavelet methods for option pricing under stochastic volatility. J. Comput. Finance 8(4), 1–42 (2005)

    Article  Google Scholar 

  186. Hofmann, N., Platen, E., Schweizer, M.: Option pricing under incompleteness and stochastic volatility. Math. Finance 2, 153–187 (1992)

    Article  MATH  Google Scholar 

  187. Hoggard, T., Whalley, A.E., Wilmott, P.: Hedging option portfolios in the presence of transaction costs. Adv. Futur. Options Res. 7, 21–35 (1994)

    Google Scholar 

  188. Holmes, A.D., Yang, H.: A front-fixing finite element method for the valuation of American options. SIAM J. Sci. Comput. 30, 2158–2180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  189. Honoré, P., Poulsen, R.: Option pricing with EXCEL. In: Nielsen, S. (ed.): Programming Languages and Systems in Computational Economics and Finance, pp. 369–402. Kluwer, Amsterdam (2002)

    Google Scholar 

  190. Huang, J.-Z., Subrahmanyam, M.G., Yu, G.G.: Pricing and hedging American options: a recursive integration method. Rev. Financ. Stud. 9, 227–300 (1996)

    Article  Google Scholar 

  191. Hull, J.C.: Options, Futures, and Other Derivatives, 4th edn. Prentice Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  192. Hull, J., White, A.: The use of the control variate technique in option pricing. J. Financ. Quant. Anal. 23, 237–251 (1988)

    Article  Google Scholar 

  193. Hunt, P.J., Kennedy, J.E.: Financial Derivatives in Theory and Practice. Wiley, Chichester (2000)

    MATH  Google Scholar 

  194. Ikonen, S., Toivanen, J.: Pricing American options using LU decomposition. Appl. Math. Sci. 1, 2529–2551 (2007)

    MathSciNet  MATH  Google Scholar 

  195. Ikonen, S., Toivanen, J.: Operator splitting methods for pricing American options under stochastic volatility. Numer. Math. 113, 299–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  196. Ingersoll, J.E.: Theory of Financial Decision Making. Rowmann and Littlefield, Savage (1987)

    Google Scholar 

  197. Int-Veen, R.: Avoiding numerical dispersion in option valuation. Report Universität Köln 2002; Comput. Vis. Sci. 10, 185–195 (2007)

    Google Scholar 

  198. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  199. Jacod, J., Protter, P.: Probability Essentials, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  200. Jäckel, P.: Monte Carlo Methods in Finance. Wiley, Chichester (2002)

    Google Scholar 

  201. Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options. Acta Appl. Math. 21, 263–289 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  202. Jamshidian, F.: An analysis of American options. Rev. Futur. Mark. 11, 72–80 (1992)

    Google Scholar 

  203. Jiang, L., Dai, M.: Convergence of binomial tree method for European/American path-dependent options. SIAM J. Numer. Anal. 42, 1094–1109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  204. Johnson, H.E.: An analytic approximation for the American put price. J. Financ. Quant. Anal. 18, 141–148 (1983)

    Article  Google Scholar 

  205. Jonen, C.: An efficient implementation of a least-squares Monte Carlo method for valuing American-style options. Int. J. Comput. Math. 86, 1024–1039 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  206. Jonen, C.: Efficient Pricing of High-Dimensional American-Style Derivatives: A Robust Regression Monte Carlo method. PhD dissertation, Universität Köln (2011). http://kups.ub.uni-koeln.de/4442

    Google Scholar 

  207. Joshi, M.S.: The Concepts and Practice of Mathematical Finance. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  208. Ju, N.: Pricing an American option by approximating its early exercise boundary as a multipiece exponential function. Rev. Financ. Stud. 11, 627–646 (1998)

    Article  Google Scholar 

  209. Kaebe, C., Maruhn, J.H., Sachs, E.W.: Adjoint-based Monte Carlo calibration of financial market models. Finance Stochast. 13, 351–379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  210. Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice Hall Series in Computational Mathematics. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  211. Kallast, S., Kivinukk, A.: Pricing and hedging American options using approximations by Kim integral equations. Eur. Finance Rev. 7, 361–383 (2003)

    Article  MATH  Google Scholar 

  212. Kallsen, J.: A didactic note on affine stochastic volatility models. In: Kabanov, Y., et al. (eds.) From Stochastic Calculus to Mathematical Finance. Springer, Berlin (2006)

    Google Scholar 

  213. Kamrad, B., Ritchken, P.: Multinomial approximating models for options with k state variables. Manag. Sci. 37, 1640–1652 (1991)

    Article  MATH  Google Scholar 

  214. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  215. Kantorovich, L.W., Akilov, G.P.: Functional Analysis in Normed Spaces. Pergamon Press, Elmsford (1964)

    MATH  Google Scholar 

  216. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer Graduate Texts. Springer, New York (1991)

    MATH  Google Scholar 

  217. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    Book  MATH  Google Scholar 

  218. Kat, H.M.: Pricing Lookback options using binomial trees: an evaluation. J. Financ. Eng. 4, 375–397 (1995)

    Google Scholar 

  219. Kebaier, A.: Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing. Ann. Appl. Probab. 15, 2681–2705 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  220. Kemna, A.G.Z., Vorst, A.C.F.: A pricing method for options based on average asset values. J. Bank. Finance 14, 113–129 (1990)

    Article  Google Scholar 

  221. Khaliq, A.Q.M., Voss, D.A., Yousuf, M.: Pricing exotic options with L-stable Padé schemes. J. Bank. Finance 31, 3438–3461 (2007)

    Article  Google Scholar 

  222. Kim, J.: The analytic valuation of American options. Rev. Financ. Stud. 3, 547–572 (1990)

    Article  Google Scholar 

  223. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  224. Klassen, T.R.: Simple, fast and flexible pricing of Asian options. J. Comput. Finance 4(3), 89–124 (2001)

    Article  Google Scholar 

  225. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  226. Knuth, D.: The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1995)

    Google Scholar 

  227. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. 23, 266–294 (1997)

    Article  MATH  Google Scholar 

  228. Korn, R., Müller, S.: The decoupling approach to binomial pricing of multi-asset options. J. Comput. Finance 12(3), 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  229. Kou, S.G.: A jump diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  MATH  Google Scholar 

  230. Kovalov, P., Linetsky, V., Marcozzi, M.: Pricing multi-asset American options: a finite element method-of-lines with smooth penalty. J. Sci. Comput. 33, 209–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  231. Kreiss, H.O., Thomée, V., Widlund, O.: Smoothing of initial data and rates of convergence for parabolic difference equations. Commun. Pure Appl. Math. 23, 241–259 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  232. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley, Chichester (1997)

    MATH  Google Scholar 

  233. Krylov, N.V.: Controlled Diffusion Processes. Springer, Heidelberg (1980)

    Book  MATH  Google Scholar 

  234. Kwok, Y.K.: Mathematical Models of Financial Derivatives. Springer, Singapore (1998)

    MATH  Google Scholar 

  235. Kwok, Y.K., Leung, K.S., Wong, H.Y.: Efficient options pricing using the Fast Fourier Transform. In: Duan, J.-C., Härdle, W.K., Gentle, J.E. (eds.) Handbook of Computational Finance, pp. 579–604. Springer, Berlin (2012)

    Chapter  Google Scholar 

  236. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problem. Wiley, Chichester (1991)

    MATH  Google Scholar 

  237. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  238. Lange, K.: Numerical Analysis for Statisticians. Springer, New York (1999)

    MATH  Google Scholar 

  239. L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure. Math. Comput. 68, 249–260 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  240. Leentvaar, C.C.W., Oosterlee, C.W.: On coordinate transformation and grid stretching for sparse grid pricing of basket options. J. Comput. Math. 222, 193–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  241. Lehn, J.: Random number generators. GAMM-Mitteilungen 25, 35–45 (2002)

    MathSciNet  MATH  Google Scholar 

  242. Leisen, D.P.J.: Pricing the American put option: a detailed convergence analyis for binomial models. J. Econ. Dyn. Control 22, 1419–1444 (1998)

    Article  MATH  Google Scholar 

  243. Leisen, D.P.J.: The random-time binomial model. J. Econ. Dyn. Control 23, 1355–1386 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  244. Leisen, D.P.J., Reimer, M.: Binomial models for option valuation – examining and improving convergence. Appl. Math. Finance 3, 319–346 (1996)

    Article  Google Scholar 

  245. Leland, H.E.: Option pricing and replication with transaction costs. J. Finance 40, 1283–1301 (1985)

    Article  Google Scholar 

  246. Levy, G.: Computational finance using C and C#. Elsevier, Amsterdam (2008)

    Google Scholar 

  247. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001)

    Article  Google Scholar 

  248. Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput. 30, 1678–1705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  249. Lux, T.: The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions. J. Econ. Behav. Organ. 33, 143–165 (1998)

    Article  Google Scholar 

  250. Lyons, T.J.: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2, 117–133 (1995)

    Article  Google Scholar 

  251. Lyuu, Y.-D.: Financial Engineering and Computation. Principles, Mathematics, Algorithms. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  252. MacMillan, L.W.: Analytic approximation for the American put option. Adv. Futur. Opt. Res. 1, 119–139 (1986)

    Google Scholar 

  253. Madan, D.B., Seneta, E.: The variance-gamma (V.G.) model for share market returns. J. Bus. 63, 511–524 (1990)

    Google Scholar 

  254. Mainardi, R., Roberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 287, 468–481 (2000)

    Article  Google Scholar 

  255. Maller, R.A., Solomon, D.H., Szimayer, A.: A multinomial approximation for American option prices in Lévy process models. Math. Finance 16, 613–633 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  256. Mandelbrot, B.B.: A multifractal walk down Wall Street. Sci. Am. 280, 70–73 (1999)

    Article  Google Scholar 

  257. Manteuffel, T.A., White, A.B., Jr.: The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comput. 47, 511–535 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  258. Marchesi, M., Cinotti, S., Focardi, S., Raberto, M.: Development and testing of an artificial stock market. In: Bischi, G.I. (ed.) Proceedings Urbino 2000 (2000)

    Google Scholar 

  259. Marsaglia, G.: Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. USA 61, 23–28 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  260. Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM Rev. 6, 260–264 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  261. Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000)

    Article  Google Scholar 

  262. Mascagni, M.: Parallel pseudorandom number generation. SIAM News 32, 5 (1999)

    MathSciNet  MATH  Google Scholar 

  263. Matache, A.-M., von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on Lévy driven assets. Report 2002–11, Seminar for Applied Mathematics, ETH Zürich (2002)

    Google Scholar 

  264. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)

    Article  MATH  Google Scholar 

  265. Mayo, A.: Fourth order accurate implicit finite difference method for evaluating American options. In: Proceedings of Computational Finance, London (2000)

    Google Scholar 

  266. McCarthy, L.A., Webber, N.J.: Pricing in three-factor models using icosahedral lattices. J. Comput. Finance 5(2), 1–33 (2001/02)

    Google Scholar 

  267. McDonald, R.L., Schroder, M.D.: A parity result for American options. J. Comput. Finance 1(3), 5–13 (1998)

    Article  Google Scholar 

  268. Mel’nikov, A.V., Volkov, S.N., Nechaev, M.L.: Mathematics of Financial Obligations. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  269. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  270. Merton, R.: Option pricing when underlying stock returns are discontinous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  271. Merton, R.C.: Continuous-Time Finance. Blackwell, Cambridge (1990)

    MATH  Google Scholar 

  272. Metwally, S.A.K., Atiya, A.: Using Brownian bridge for fast simulation of jump-diffusion processes and barrier options. J. Derv. 10, 43–54 (2002)

    Article  Google Scholar 

  273. Meyer, G.H.: Numerical Investigation of early exercise in American puts with discrete dividends. J. Comput. Finance 5(2), 37–53 (2002)

    Article  Google Scholar 

  274. Mikosch, T.: Elementary Stochastic Calculus, with Finance in View. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  275. Mil’shtein, G.N.: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19, 557–562 (1974)

    Article  MathSciNet  Google Scholar 

  276. Milshtein, G.N.: A method of second-order accuracy integration of stochastic differential equations. Theory Probab. Appl. 23, 396–401 (1978)

    Article  MathSciNet  Google Scholar 

  277. van Moerbeke, P.: On optimal stopping and free boundary problems. Rocky Mt. J. Math. 4, 539–578 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  278. Moro, B.: The full Monte. Risk 8, 57–58 (1995)

    Google Scholar 

  279. Morokoff, W.J.: Generating quasi-random paths for stochastic processes. SIAM Rev. 40, 765–788 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  280. Morokoff, W.J., Caflisch, R.E.: Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 15, 1251–1279 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  281. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  282. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling, 2nd edn. 2005. Springer, Berlin (1997)

    Google Scholar 

  283. Neftci, S.N.: An Introduction to the Mathematics of Financial Derivatives. Academic Press, San Diego (1996)

    MATH  Google Scholar 

  284. Newton, N.J.: Continuous-time Monte Carlo methods and variance reduction. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 22–42. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  285. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84, 957–1041 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  286. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  287. Niederreiter, H., Jau-Shyong Shiue, P. (eds.): Monte Carlo and Quasi-Monte Carlo methods in scientific computing. In: Proceedings of a Conference at the University of Nevada, Las Vegas, Nevada, USA, 1994. Springer, New York (1995)

    Google Scholar 

  288. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Finance 5(4), 69–97 (2002)

    Article  Google Scholar 

  289. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of American multi-asset option problems. J. Comput. Appl. Math. 222, 3–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  290. Nielsen, L.T.: Pricing and Hedging of Derivative Securities. Oxford University Press, Oxford (1999)

    Google Scholar 

  291. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  292. Omberg, E.: The valuation of American put options with exponential exercise policies. Adv. Futur. Opt. Res. 2, 117–142 (1987)

    Google Scholar 

  293. Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (2003)

    MathSciNet  MATH  Google Scholar 

  294. Panini, R., Srivastav, R.P.: Option pricing with Mellin transforms. Math. Comput. Model. 40, 43–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  295. Papageorgiou, A., Traub, J.F.: New results on deterministic pricing of financial derivatives. Columbia University Report CUCS-028-96 (1996)

    Google Scholar 

  296. Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portf. Manag. 22, 113–120 (1995)

    Article  Google Scholar 

  297. Pelsser, A., Vorst, T.: The binomial model and the Greeks. J. Deriv. 1, 45–49 (1994)

    Article  Google Scholar 

  298. Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flow. Springer, New York (1983)

    Book  MATH  Google Scholar 

  299. Pham, H.: Optimal stopping, free boundary, and American option in a jump-diffusion model. Appl. Math. Optim. 35, 145–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  300. Pironneau, O., Hecht, F.: Mesh adaption for the Black & Scholes equations. East-West J. Numer. Math. 8, 25–35 (2000)

    MathSciNet  MATH  Google Scholar 

  301. Platen, E.: An introduction to numerical methods for stochastic differential equations. Acta Numer. 8, 197–246 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  302. Pliska, S.R.: Introduction to Mathematical Finance. Discrete Time Models. Blackwell, Malden (1997)

    Google Scholar 

  303. Pooley, D.M., Forsyth, P.A., Vetzal, K.R.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23, 241–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  304. Pooley, D.M., Forsyth, P.A., Vetzal, K., Simpson, R.B.: Unstructured meshing for two asset barrier options. Appl. Math. Finance 7, 33–60 (2000)

    Article  MATH  Google Scholar 

  305. Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Finance 6(4), 25–40 (2003)

    Article  Google Scholar 

  306. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  307. Protter, P.E.: Stochastic Integration and Differential Equations. Springer, Berlin (2004)

    MATH  Google Scholar 

  308. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000)

    MATH  Google Scholar 

  309. Quecke, S.: Efficient numerical methods for pricing American options under Lévy models. PhD-dissertation, Universität Köln (2007). http://kups.ub.uni-koeln.de/2018

    MATH  Google Scholar 

  310. Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math. 43, 309–327 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  311. Rebonato, R.: Interest-Rate Option Models: Understanding, Analysing and Using Models for Exotic Interest-Rate Options. Wiley, Chichester (1996)

    MATH  Google Scholar 

  312. Reisinger, C.: Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben. PhD Thesis, Universität Heidelberg (2004)

    Google Scholar 

  313. Rendleman, R.J., Bartter, B.J.: Two-state option pricing. J. Finance 34, 1093–1110 (1979)

    Article  Google Scholar 

  314. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  315. Ribeiro, C., Webber, N.: A Monte Carlo method for the normal inverse Gaussian option valuation model using an inverse Gaussian bridge. Working paper, City University, London (2002)

    Google Scholar 

  316. Ribeiro, C., Webber, N.: Valuing path dependent options in the variance-gamma model by Monte Carlo with a gamma bridge. J. Comput. Finance 7(2), 81–100 (2003/04)

    Google Scholar 

  317. Ripley, B.D.: Stochastic Simulation. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  318. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  319. Rogers, L.C.G.: Monte Carlo valuation of American options. Math. Finance 12, 271–286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  320. Rogers, L.C.G., Shi, Z.: The value of an Asian option. J. Appl. Probab. 32, 1077–1088 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  321. Rogers, L.C.G., Talay, D. (eds.): Numerical Methods in Finance. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  322. Rubinstein, M.: Implied binomial trees. J. Finance 69, 771–818 (1994)

    Article  Google Scholar 

  323. Rubinstein, M.: Return to oz. Risk 7(11), 67–71 (1994)

    Google Scholar 

  324. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  325. Ruppert, D.: Statistics and Finance. An Introduction. Springer, New York (2004)

    Book  MATH  Google Scholar 

  326. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  327. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  328. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  329. Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein-Uhlenbeck process: an extension. Eur. Finance Rev. 3(1), 23–46 (1999)

    Article  MATH  Google Scholar 

  330. Schönbucher, P.J., Wilmott, P.: The feedback effect of hedging in illiquid markets. SIAM J. Applied Mathematics 61, 232–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  331. Schoenmakers, J.G.M., Heemink, A.W.: Fast Valuation of Financial Derivatives. J. Comput. Finance 1, 47–62 (1997)

    Article  Google Scholar 

  332. Schoutens, W.: Lévy Processes in Finance. Wiley, Chichester (2003)

    Book  Google Scholar 

  333. Schuss, Z.: Theory and Applications of Stochastic Differential Equations. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1980)

    MATH  Google Scholar 

  334. Schwarz, H.R.: Numerical Analysis. Wiley, Chichester (1989)

    Google Scholar 

  335. Schwarz, H.R.: Methode der finiten Elemente. Teubner, Stuttgart (1991)

    Book  MATH  Google Scholar 

  336. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer Interdisciplinary Applied Mathematics, vol. 5. Springer, New York (2010)

    Google Scholar 

  337. Seydel, R.U.: Lattice approach and implied trees. In: Duan, J.-C., Härdle, W.K., Gentle, J.E. (eds.) Handbook of Computational Finance, pp. 551–577. Springer, Berlin (2012)

    Chapter  Google Scholar 

  338. Seydel, R.U.: Risk and computation. In: Glau, K., Scherer, M., Zagst, R. (eds.) Innovations in Quantitative Risk Management, pp. 305–316. Springer, Heidelberg (2015)

    Google Scholar 

  339. Shiryaev, A.N.: Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  340. Shreve, S.E.: Stochastic Calculus for Finance II. Continuous-Time Models. Springer, New York (2004)

    MATH  Google Scholar 

  341. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 2nd edn. Clarendon Press, Oxford (1978)

    MATH  Google Scholar 

  342. Smithson, C.: Multifactor options. Risk 10(5), 43–45 (1997)

    Google Scholar 

  343. Spanier, J., Maize, E.H.: Quasi-random methods for estimating integrals using relatively small samples. SIAM Rev. 36, 18–44 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  344. Stauffer, D.: Percolation models of financial market dynamics. Adv. Complex Syst. 4, 19–27 (2001)

    Article  MATH  Google Scholar 

  345. Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, New York (2001)

    Book  MATH  Google Scholar 

  346. Steiner, M., Wallmeier, M., Hafner, R.: Baumverfahren zur Bewertung diskreter Knock-Out-Optionen. OR Spektrum 21, 147–181 (1999)

    Article  MATH  Google Scholar 

  347. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1996)

    MATH  Google Scholar 

  348. Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimensions I. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  349. Stojanovic, S.: Computational Financial Mathematics Using MATHEMATICA. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  350. Strang, G.: Computational Science and Engineering. Wellesley, Cambridge (2007)

    MATH  Google Scholar 

  351. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  352. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  353. Tavella, D., Randall, C.: Pricing Financial Instruments. The Finite Difference Method. Wiley, New York (2000)

    Google Scholar 

  354. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  355. Thomas, D.B., Luk, W., Leong, P.H.W., Villasenor, J.D.: Gaussian random number generators. ACM Comput. Surv. 39(4), Article 11 (2007)

    Google Scholar 

  356. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, New York (1995)

    Book  MATH  Google Scholar 

  357. Thomas, J.W.: Numerical Partial Differential Equations. Conservation Laws and Elliptic Equations. Springer, New York (1999)

    Book  Google Scholar 

  358. Tian, Y.: A modified lattice approach to option pricing. J. Futur. Mark. 13, 563–577 (1993)

    Article  Google Scholar 

  359. Tian, Y.: A flexible binomial option pricing model. J. Futur. Mark. 19, 817–843 (1999)

    Article  MathSciNet  Google Scholar 

  360. Tilley, J.A.: Valuing American options in a path simulation model. Trans. Soc. Actuar. 45, 83–104 (1993)

    Google Scholar 

  361. Topper, J.: Finite element modeling of exotic options. In: OR Proceedings 1999, pp. 336–341 (2000)

    MATH  Google Scholar 

  362. Topper, J.: Financial Engineering with Finite Elements. Wiley, New York (2005)

    Google Scholar 

  363. Traub, J.F., Wozniakowski, H.: The Monte Carlo algorithm with a pseudo-random generator. Math. Comput. 58, 323–339 (1992)

    Article  MATH  Google Scholar 

  364. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  365. Tsay, R.S.: Analysis of Financial Time Series. Wiley, New York (2002)

    Book  MATH  Google Scholar 

  366. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  367. Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  368. Vellekoop, M.H., Nieuwenhuis, J.W.: Efficient pricing of derivatives on assets with discrete dividends. Appl. Math. Finance 13, 265–284 (2006)

    Article  MATH  Google Scholar 

  369. Vichnevetsky, R.: Computer Methods for Partial Differential Equations. Volume I. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  370. Villeneuve, S., Zanette, A.: Parabolic ADI methods for pricing American options on two stocks. Math. Oper. Res. 27, 121–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  371. Vretblad, A.: Fourier Analysis and Its Applications. Springer, New York (2003)

    Book  MATH  Google Scholar 

  372. Wallace, C.S.: Fast pseudorandom numbers for normal and exponential variates. ACM Trans. Math. Softw. 22(1), 119–127 (1996)

    Article  MATH  Google Scholar 

  373. Wang, X., Phillips, P.C.B., Yu, J.: Bias in estimating multivariate and univariate diffusion. J. Econ. 161, 228–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  374. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  375. Wilmott, P.: Derivatives. Wiley, Chichester (1998)

    Google Scholar 

  376. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing. Mathematical Models and Computation. Oxford Financial Press, Oxford (1996)

    MATH  Google Scholar 

  377. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  378. Zagst, R.: Interest-Rate Management. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  379. Zhang, J.E.: A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options. J. Comput. Finance 5(1), 59–79 (2001)

    Article  Google Scholar 

  380. Zhao, Y., Ziemba, W.T.: Hedging errors with Leland’s option model in the presence of transaction costs. Finance Res. Lett. 4, 49–58 (2007)

    Article  Google Scholar 

  381. Zhu, Y.-I., Wu, X., Chern, I.-L.: Derivative Securities and Difference Methods. Springer, New York (2004)

    Book  MATH  Google Scholar 

  382. Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill, London (1977)

    Google Scholar 

  383. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for PDE models of Asian options. J. Comput. Finance 1(2), 39–78 (1997/98)

    Google Scholar 

  384. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  385. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Discrete Asian barrier options. J. Comput. Finance 3(1), 41–67 (1999)

    Article  MATH  Google Scholar 

  386. Zvan, R., Vetzal, K.R., Forsyth, P.A.: PDE methods for pricing barrier options. J. Econ. Dyn. Control 24, 1563–1590 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Seydel, R.U. (2017). Standard Methods for Standard Options. In: Tools for Computational Finance. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-7338-0_4

Download citation

Publish with us

Policies and ethics