Digital Signal Processing Circuits for Digital Class-D Power Amplifiers

  • Krzysztof SozańskiEmail author
Part of the Power Systems book series (POWSYS)


This Chapter considers digital signal processing circuits for the digital class-D power amplifier. Special attention is paid to the high quality audio power amplifier. In the digital class-D audio amplifier the dynamics should reach 120 dB, which results in high requirements for the algorithm used and its digital realization. The author proposes a modulator with a noise shaping circuit for the class-D amplifier. Audio signal interpolators are also considered, that allow for an increase in sampling frequency whilst maintaining a substantial separation of signal from noise. The author also presents an original analog power supply voltage fluctuation compensation circuit for the class-D amplifier. The problems of loudspeaker measurements are considered in this Chapter too. The class-D amplifier with digital click modulation is considered as well. Finally, two-way and three-way loudspeaker systems, designed by the author, are presented, for which an input to output signal is digitally processed.


Filter Bank Finite Impulse Response Pulse Width Modulator Digital Signal Processor Duty Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Analog Devices (2005) ADSP-2136x SHARC processor hardware reference. Rev 1.0. Analog Devices Inc\(\text{.}\) Google Scholar
  2. 2.
    Analog Devices (2007) ADSP-21364 Processor EZ-KIT lite evaluation system manual. Rev 3.2, Analog Devices Inc\(\text{. }\) Google Scholar
  3. 3.
    D’Appolito J (1998) Testing loudspeaker. Audio Amateur Press, PeterboroughGoogle Scholar
  4. 4.
    Audiomatica (2005) Clio electrical and acoustical test. User’s Manual, AudiomaticaGoogle Scholar
  5. 5.
    Barbour E (1998) The cool sound of tubes. IEEE Spectr 35(8):24–35CrossRefGoogle Scholar
  6. 6.
    Bateman A, Paterson-Stephens I (2002) The DSP handbook: algorithms, applications and design techniques. Prentice Hall, New YorkGoogle Scholar
  7. 7.
    Bresch E, Padgett WT (1999) TMS320C67-based design of a digital audio power amplifier introducing novel feedback strategy. In: Texas Instruments DSPS Fest 99Google Scholar
  8. 8.
    Bruunshuus T (2004) Implementation of power supply volume control. Application report, SLEA038, Texas Instruments Inc\(\text{. }\) Google Scholar
  9. 9.
    Bruunshuus T (2004) Power supply considerations for AV receivers. Application report, SLEA028, Texas Instruments Inc\(\text{. }\) Google Scholar
  10. 10.
    Carley RL, Schreier R, Temes GC (1997) Delta-sigma ADCs with multibit internal conveters. In: Norsworthy SR, Schreier R, Temes GC (eds) Delta-sigma data converters, theory, design and simulation. IEEE PressGoogle Scholar
  11. 11.
    Cataltepe T, Kramer AR, Larson LE, Temes GC, Walden RH (1992) Digitaly corrected multi-bit \(\Sigma \Delta \) data converters. In: Candy JC, Temes GC (eds.) Oversampling delta-sigma data converters theory, design, and simulation, IEEE proceedings ISCAS’89, May 1989. IEEE PressGoogle Scholar
  12. 12.
    Dabrowski A, Sozanski K (1998) Implementation of multirate modified wave digital filters using digital signal processors. In: XXI Krajowa Konferencja Teoria Obwodów i Układy Elektroniczne, KKTUIE98, PoznanGoogle Scholar
  13. 13.
    Dickason V (2000) The loudspeaker design cookbook. Audio Amateur Press, PeterboroughGoogle Scholar
  14. 14.
    Dobrucki A (2007) Electroacoustic transducers. WNT, Warszawa (in Polish)Google Scholar
  15. 15.
    Duncan B (1996) High performance audio power amplifier for music performance and reproduction, NewnesGoogle Scholar
  16. 16.
    Esslinger R, Gruhler G, Stewart RW (2004) Feedback strategies in digitally controlled class-D amplifiers. In: Conference proceedings, AES 114th convention, Amsterdam, The Netherlands, 22–25 March 2003. Audio Engineering SocietyGoogle Scholar
  17. 17.
    Eton (2012) Midrange loudspeaker 4–200/A8/25 HEX. Data sheet, Eton GmbHGoogle Scholar
  18. 18.
    Eton (2012) Midrange loudspeaker 7–200/A8/32 HEX. Data sheet, Eton GmbHGoogle Scholar
  19. 19.
    Eton (2012) Midrange loudspeaker 5–880/25 Hex. Data sheet, Eton GmbHGoogle Scholar
  20. 20.
    Eton (2012) Tweeter loudspeaker 26HD1/A8. Data sheet, Eton GmbhGoogle Scholar
  21. 21.
    Everest F (2000) Master handbook of acoustics. McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Fettweis A (1982) Transmultiplexers with either analog conversion circuits, wave digital filters, or SC filters—a review. IEEE Trans Commun 30(7):1575–1586CrossRefGoogle Scholar
  23. 23.
    Fettweis A (1989) Modified wave digital filters for improved implementation by commercial digital signal processors. Sig Process 16(3):193–207MathSciNetCrossRefGoogle Scholar
  24. 24.
    Flige N (1994) Multirate digital signal processing. Wiley, New YorkGoogle Scholar
  25. 25.
    Galton I (1997) Spectral shaping of circuit errors in digital-to-analog converters. IEEE Trans Circ Syst II Analog Digital Sig Proc 44(10):789–797CrossRefGoogle Scholar
  26. 26.
    Gazsi L (1985) Explicit formulas for lattice wave digital filters. IEEE Trans Circ Syst 32(1):68–88CrossRefGoogle Scholar
  27. 27.
    Goldberg JM, Sandler MB (1994) New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier. IEE Proc Circ Devices Syst 141(4):315–324CrossRefGoogle Scholar
  28. 28.
    Gwee BH, Chang JS, Adrian V (2007) A micropower low-distortion digital class-D amplifier based on an algorithmic pulsewidth modulator. IEEE Trans Circ Syst I Regul Pap 52(10):2007–2022CrossRefGoogle Scholar
  29. 29.
    Holmes DG, Lipo TA (2003) Pulse width modulation for power converters: principles and practice. Institute of Electrical and Electronics Engineers, Inc\(\text{. }\) Google Scholar
  30. 30.
    Kostrzewa M, Kulka Z (2005) Time-domain performance investigations of the click modulation-based PWM for digital class-D audio power amplifiers. In: Signal processing 2005, IEEE conference proceedings, pp 121–126Google Scholar
  31. 31.
    Krukowski A, Kale I, Morling R, Hejn K (1994) A Design technique for polyphase decimators with binary constrained coefficients for high resolution A/D converters. In: IEEE international symposium on circuits and systems (ISCAS’94), pp 533–536Google Scholar
  32. 32.
    Kuncewicz L (2009) Design and realization of PWM with click modulation algorithm. Master’s thesis, University of Zielona Gora, Poland (in Polish)Google Scholar
  33. 33.
    Larson LE, Cataltepe T, Temes G (1992) Multibit oversampled - A/D converter with digital error correction. In: Candy JC, Temes GC (eds) Oversampling delta-sigma data converters, theory, design and simulation. IEEE electronics letters, 24, August 1988. IEEE PressGoogle Scholar
  34. 34.
    Ledger D, Tomarakos J (1998) Using the low cost, high performance ADSP-21065L digital signal processor for digital audio applications. Revision 1.0, Analog Devices, Norwood, USAGoogle Scholar
  35. 35.
    Linkwitz SH (1976) Active crossover networks for non-coincident drivers. J Audio Eng Soc 24(1):2–8Google Scholar
  36. 36.
    Logan BF (1984) Click modulation. AT&T Bell Lab Tech J 63(3):401–423CrossRefGoogle Scholar
  37. 37.
    Madsen K, Soerensen T (2005) PSRR for PurePath digitaltm audio amplifiers. Application report, SLEA049, Texas Instruments Inc\(\text{. }\) Google Scholar
  38. 38.
    Midya P, Roeckner B (2010) Large-signal design and performance of a digital PWM amplifier. J Audio Eng Soc 58(9):739–752Google Scholar
  39. 39.
    Mosely ID, Mellor PH, Bingham CM (1999) Effect of dead time on harmonic distortion in Class-D audio power amplifiers. IEEE Electron Lett 35(12):950–952CrossRefGoogle Scholar
  40. 40.
    Mouton T, Putzeys B (2009) Digital control of a PWM switching amplifier with global feedback. In: Conference proceeding, AES 37th international conference, Hillerod, Denmark, 28–30 August 2009. Audio Engineering SocietyGoogle Scholar
  41. 41.
    Nielsen K (1998) Audio power amplifier techniques with energy efficient power conversion. PhD thesis, Departament of Applied Electronics, Technical University of DenmarkGoogle Scholar
  42. 42.
    Orfanidis SJ (1996) ADSP-2181 experiments. Accessed Dec 2012
  43. 43.
    Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall Inc., New JerseyGoogle Scholar
  44. 44.
    Oliva A, Paolini E, Ang SS (2005) A new audio file format for low-cost, high-fidelity, portable digital audio amplifiers, Texas InstrumentsGoogle Scholar
  45. 45.
    Pascual C, Song Z, Krein PT, Sarwate DV, Midya P, Roeckner WJ (2003) High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP Implementation and results. IEEE Trans Power Electron 18(1):473–485CrossRefGoogle Scholar
  46. 46.
    Putzeys B (2008) A universal grammar of class D amplification, Tutorial, 124th AES convention. Accessed 26 June 2012
  47. 47.
    Putzeys B, Veltman A, Hulst P, Groenenberg R (2006) All amplifiers are analogue, but some amplifiers are more analogue than others. Convention paper 353, 120th convention 2006 May. France, Audio Engineering Society, Paris, pp 20–23Google Scholar
  48. 48.
    Santi S, Ballardini M, Setti Rovatti RG, (2005) The effects of digital implementation on ZePoC codec. ECCTD III:173–176. IEEEGoogle Scholar
  49. 49.
    Self D (2002) Audio power amplifier design handbook. NewnesGoogle Scholar
  50. 50.
    Self D (2008) Linear audio power amplification. In: Tutorial, 124th AES convention. Accessed 26 June 2012
  51. 51.
    Slone GR (1999) High-power audio amplifier construction manual. McGraw-Hill, New YorkGoogle Scholar
  52. 52.
    Small R (1973) Vented-box loudspeaker systems. J Audio Eng Soc Part I 21:363–372Google Scholar
  53. 53.
    Small R (1973) Closed-box loudspeaker systems. J Audio Eng Soc Part II 21:11–18Google Scholar
  54. 54.
    Small R (1973) Vented-box loudspeaker systems. J Audio Eng Soc Part III 21:635–639Google Scholar
  55. 55.
    Small R (1973) Vented-box loudspeaker systems. J Audio Eng Soc Part II 21:549–554Google Scholar
  56. 56.
    Small R (1972) Direct-radiator loudspeaker system analysis. J Audio Eng Soc 20:383–395Google Scholar
  57. 57.
    Small R (1972) Closed-box loudspeaker systems. J Audio Eng Soc Part I 20:798–808Google Scholar
  58. 58.
    Sozanski K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)Google Scholar
  59. 59.
    Sozanski K (2007) Subwoofer loudspeaker system with acoustic dipole. Elektronika : Konstrukcje, Technologie, Zastosowania 4:21–26Google Scholar
  60. 60.
    Sozanski K (2010) Digital realization of a click modulator for an audio power amplifier. Przeglad Elektrotechniczny (Electric Rev) 2010(2):353–357Google Scholar
  61. 61.
    Sozanski K (2002) Implementation of modified wave digital filters using digital signal processors. In: Conference proceedings, 9th international conference on electronics, circuits and systems, ICECS 2002, pp 1015–1018Google Scholar
  62. 62.
    Sozanski K, Strzelecki R, Fedyczak Z (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings, 2001 IEEE 32nd annual power electronics specialists conference, PESC 2001, pp 1245–1250Google Scholar
  63. 63.
    Sozanski K (2015) Selected problems of digital signal processing in power electronic circuits. In: Conference proceedings SENE 2015. Lodz PolandGoogle Scholar
  64. 64.
    Sozanski K (2016) Signal-to-noise ratio in power electronic digital control circuits. In: Conference proceedings: Signal processing, algorithms, architectures, arrangements and applications, SPA 2016. Poznan University of Technology, pp 162–171Google Scholar
  65. 65.
    Stefanazzi L, Chierchie F (2014) Low distortion switching amplifier with discrete-time click modulation. IEEE Trans Ind Electron 61(7):3511–3518CrossRefGoogle Scholar
  66. 66.
    Streitenberger M, Bresch H, Mathis W (2000) Theory and implementation of a new type of digital power amplifiers for audio applications. In: ICAS 2000. IEEE, vol I, pp 511–514Google Scholar
  67. 67.
    Streitenberger M, Felgenhauer F, Bresch H, Mathis W (2002) Class-D audio amplifiers with separated baseband for low-power mobile applications. In: Conference proceedings, ICCSC’02.IEEE, pp 186–189Google Scholar
  68. 68.
    Texas Instruments (2004) TAS5121 Digital amplifier power stage. Texas Instruments Inc\(\text{. }\) Google Scholar
  69. 69.
    Texas Instruments (2007) TAS5518-5261K2EVM. User’s guide, SLAA332A, Texas Instuments Inc\(\text{. }\) Google Scholar
  70. 70.
    Texas Instruments (2007) TAS5508-5121K8EVM evaluation module for the TAS5508 8-channel digital audio PWM processor and the TAS5121 digital amplifier power output stage. User’s guide, SLEU054b.pdf, Texas Instrumentss Inc\(\text{. }\) Google Scholar
  71. 71.
    Instruments Texas (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232 digital signal controllers (DSCs). Texas Instruments Inc., Data manualGoogle Scholar
  72. 72.
    Texas Instruments (2010) TAS5508C 8-channel digital audio PWM processor. Data manual, SLES257, Texas Instruments Inc\(\text{. }\) Google Scholar
  73. 73.
    Texas Instruments (2010) C2000 Teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc\(\text{. }\) Google Scholar
  74. 74.
    Texas Instruments (2010) A 600W, universal input, isolated PFC power supply for AVR amplifiers based on the TAS5630/5631. Reference Design, SLOU293 Texas Instruments Inc\(\text{. }\) Google Scholar
  75. 75.
    Texas Instruments (2012) TAS5631B 300 W stereo/ 600 W mono PurePathtm HD digital-input power stage. Data sheet, SLES263C, Texas Instruments Inc\(\text{. }\) Google Scholar
  76. 76.
    Thiele N (1971) Loudspeakers in vented boxes. J Audio Eng Soc Part I 19:382–392Google Scholar
  77. 77.
    Thiele N (1971) Loudspeakers in vented boxes. J Audio Eng Soc Part II 19:471–483Google Scholar
  78. 78.
    Thile N, Small R (2008) Loudspeaker parameters, Tutorial. In: AES 124th convention.
  79. 79.
    Vaidyanathan PP (1992) Multirate systems and filter banks. Prentice Hall Inc., New JerseyzbMATHGoogle Scholar
  80. 80.
    Venezuela RA, Constantindes AG (1982) Digital signal processing schemes for efficient interpolation and decimation. IEE Proc Part G(6):225–235Google Scholar
  81. 81.
    Verona J (2001) Power digital-to-analog conversion using sigma-delta and pulse width modulations. In: ECE1371 Analog Electronics II, ECE University of Toronto 2001(II), pp 1–14Google Scholar
  82. 82.
    Zielinski TP (2005) Digital signal processing: from theory to application. Wydawnictwo Komunikacji i Lacznosci, Warsaw (in Polish)Google Scholar
  83. 83.
    Zielinski TP, Korohoda P, Rumian R (eds) (2014) Digital signal processing in telecommunication, basics, multimedia transmission. Wydawnictwo Naukowe PWN, Warsaw (in Polish)Google Scholar
  84. 84.
    Zolzer U (2008) Digital audio signal processing. Wiley, New YorkCrossRefGoogle Scholar
  85. 85.
    Zolzer U (ed) (2002) DAFX—digital audio effects. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations