Advertisement

Selected Methods of Signal Filtration and Separation and Their Implementation

  • Krzysztof SozańskiEmail author
Chapter
  • 1.7k Downloads
Part of the Power Systems book series (POWSYS)

Abstract

Selected methods of filtration and separation of signals and their implementation using digital signal processors are presented in this Chapter. At the beginning of the chapter there is discussion of classical finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters. However, special attention is paid to lattice wave digital filters, which are excellent in implementation. Modified lattice wave digital filters for modern digital signal processors are considered. The next section presents infinite impulse response digital filters with linear-phase, and a discussion of the their causal realizations. Following this section multirate circuits are introduced; both circuits for reducing the sample rate—decimators, and circuits for increasing the sample rate—interpolators are examined. Consideration is given to interpolator circuits based on lattice wave digital filters. After this a section dedicated to digital filter banks follows. Particular attention has been paid to digital filter banks useful for power electronics applications: wave digital filters, sliding DFT, sliding Goertzel, moving DFT and strictly complementary filter banks. Presented are some implementations of digital filters using digital signal processors. The last part of this chapter is devoted to selected digital signal processors from Texas Instruments and Analog Devices.

Keywords

Lattice Wave Digital Filters (LWDF) Modern Digital Signal Processors Analysis Filter Bank Multirate Circuit All-pass Sections 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Analog Devices (1994) ADSP-21000 family application handbook, vol 1. Analog Devices, Inc\(\text{.}\) Google Scholar
  2. 2.
    Analog Devices (1999) Interfacing the ADSP-21065L SHARC DSP to the AD1819A AC-97 soundport codec. Analog Devices, Inc\(\text{. }\) Google Scholar
  3. 3.
    Analog Devices (2003) ADSP-21065L EZ-KIT lite evaluation system manual. Analog Devices, Inc.\(\text{. }\) Google Scholar
  4. 4.
    Analog Devices (2004) ADSP-2106x SHARC Processor user’s manual. Analog Devices, Inc\(\text{. }\) Google Scholar
  5. 5.
    Analog Devices (2005) ADSP-2136x SHARC processor hardware reference. Rev 1.0, Analog Devices, Inc\(\text{. }\) Google Scholar
  6. 6.
    Analog Devices (2007) ADSP-21364 Processor EZ-KIT lite evaluation system manual. Rev 3.2, Analog Devices, Inc\(\text{. }\) Google Scholar
  7. 7.
    Arriens HL (2006) (L)WDF Toolbox for MATLAB reference guide. Technical report, Delft University of Technology, WDF Toolbox RG v1 0.pdfGoogle Scholar
  8. 8.
    Arriens HL (2006) (L)WDF Toolbox for MATLAB, user’s guide. Technical report, Delft University of Technology, WDF Toolbox UG v1 0.pdfGoogle Scholar
  9. 9.
    Aziz SA (2004) Efficient arbitrary sample rate conversion using zero phase IIR. In: Proceedings of AES 116th convention, Berlin, Germany. Audio Engineering SocietyGoogle Scholar
  10. 10.
    Aziz SA (2007) Sample rate converter having a zero phase filter. United State Patent, Patent No: US 7,167,113 B2Google Scholar
  11. 11.
    Bagci B (2003) Programming and use of TMS320F2812 DSP to control and regulate power electronic converters. Master’s thesis, University of Applied Science CologneGoogle Scholar
  12. 12.
    Bateman A, Paterson-Stephens I (2002) The DSP handbook: algorithms, applications and design techniques. Prentice Hall, LondonGoogle Scholar
  13. 13.
    Bruun G (1978) Z-transform DFT filters and FFT’s. IEEE Trans Acoust Speech Sig Process 26(1):56–63CrossRefGoogle Scholar
  14. 14.
    Chassaing R (2005) Digital signal processing and applications with the C6713 and C6416 DSK. Wiley, New YorkGoogle Scholar
  15. 15.
    Chassaing R, Reay D (2008) Digital signal processing and applications with the C6713 and C6416 DSK. Wiley, New YorkGoogle Scholar
  16. 16.
    Chen WK (ed) (1995) The circuits and filters handbook. IEEE Press, Boca RatonzbMATHGoogle Scholar
  17. 17.
    Crochiere RE, Rabiner LR (1983) Multirate digital signal processing. Prentice Hall, Inc., Upper Saddle RiverGoogle Scholar
  18. 18.
    Czarnach R (1982) Recursive processing by noncausal digital filters. IEEE Trans Acoust Speech Sig Process 30(3):363–370CrossRefGoogle Scholar
  19. 19.
    Dabrowski A (1988) Pseudopower recovery in multirate signal processing (Odzysk pseudomocy użytecznej w wieloszybkościowym przetwarzaniu sygnaów), vol 198. Wydawnictwo Politechniki Poznanskiej, Poznan (in Polish)Google Scholar
  20. 20.
    Dabrowski A (1997) Multirate and multiphase switched-capacitor circuits. Chapman & Hall, LondonGoogle Scholar
  21. 21.
    Dabrowski A (ed) (1997) Digital signal processing using digital signal processors. Wydawnictwo Politechniki Poznańskiej, Poznań (in Polish)Google Scholar
  22. 22.
    Dabrowski A, Fettweis A (1987) Generalized approach to sampling rate alteration in wave digital filters. IEEE Trans Circ Syst Theor 34(6):678–686CrossRefGoogle Scholar
  23. 23.
    Dabrowski A, Sozanski K (1998) Implementation of multirate modified wave digital filters using digital signal processors. XXI Krajowa Konferencja Teoria Obwodów i Układy Elektroniczne, KKTUIE98, PoznanGoogle Scholar
  24. 24.
    Dahnoun N (2000) Digital signal processing implementation using the TMS320C6000 DSP platform. Pearson Education LimitedGoogle Scholar
  25. 25.
    Data Translation (2009) Benefits of simultaneous data acquisition modules. Technical report, Data translationGoogle Scholar
  26. 26.
    Delft University of Technology (2012) (L)WDF Toolbox for Matlab. Technical report, Delft University of TechnologyGoogle Scholar
  27. 27.
    Embree PM, Kimble B (1991) C language algorithms for digital signal processing. Prentice Hall Inc., Upper Saddle RiverGoogle Scholar
  28. 28.
    Farhang-Boroujeny B, Lee Y, Ko C (1996) Sliding transforms for efficient implementation of transform domain adaptive filters. Sig Process 52(1):83–96. ElsevierGoogle Scholar
  29. 29.
    Fettweis A (1971) Digital filter structures related to classical filter networks. AEU, Band 25, Heft 2:79–89Google Scholar
  30. 30.
    Fettweis A (1972) Pseudo-passivity, sensitivity, and stability of wave digital filters. IEEE Trans Circ Theor 19(6):668–673CrossRefGoogle Scholar
  31. 31.
    Fettweis A (1982) Transmultiplexers with either analog conversion circuits, wave digital filters, or SC filters—a review. IEEE Trans Commun 30(7):1575–1586CrossRefGoogle Scholar
  32. 32.
    Fettweis A (1986) Wave digital filters: theory and practice. Proc IEEE 74(2):270–327CrossRefGoogle Scholar
  33. 33.
    Fettweis A (1989) Modified wave digital filters for improved implementation by commercial digital signal processors. Sig Process 16(3):193–207MathSciNetCrossRefGoogle Scholar
  34. 34.
    Fettweis A, Levin H, Sedlmeyer A (1974) Wave digital lattice filters. Int J Circ Theor Appl 2(2):203–211CrossRefGoogle Scholar
  35. 35.
    Fettweis A, Nossek J, Meerkotter K (1985) Reconstruction of signals after filtering and sampling rate reduction. IEEE Trans Acoust Speech Sig Process 33(4):893–902CrossRefGoogle Scholar
  36. 36.
    Flige N (1994) Multirate digital signal processing. Wiley, New YorkGoogle Scholar
  37. 37.
    Gazsi L (1985) Explicit formulas for lattice wave digital filters. IEEE Trans Circ Syst 32(1):68–88CrossRefGoogle Scholar
  38. 38.
    Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Mon 65:34–35MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hamming R (1989) Digital filters. Dover Publications Inc., New YorkGoogle Scholar
  40. 40.
    Izydorczyk J, Konopacki J (2003) Analog and digital filters. Wydawnictwo Pracowni Komputerowej, Gliwice (in Polish)Google Scholar
  41. 41.
    Jacobsen E, Lyons R (2003) The sliding DFT. IEEE Sig Process Mag 20(2):74–80CrossRefGoogle Scholar
  42. 42.
    Jacobsen E, Lyons R (2004) An update to the sliding DFT. IEEE Sig Process Mag 21:110–111CrossRefGoogle Scholar
  43. 43.
    Kuo SM, Lee BH (2001) Real-time digital signal processing, implementation, applications, and experiments with the TMS320C55X. Wiley, New YorkCrossRefGoogle Scholar
  44. 44.
    Kurosu A, Miyase S, Tomiyama S, Takebe T (2003) A technique to truncate IIR filter impulse response and its application to real-time implementation of linear-phase IIR filters. IEEE Trans Sig Process 51(5):1284–1292MathSciNetCrossRefGoogle Scholar
  45. 45.
    Lawson S (1995) Wave digital filters. In: Chen W-K (ed) The circuits and filters handbook. IEEE Press, Boca Raton, pp 2634–2657Google Scholar
  46. 46.
    Lawson S, Mirzai A (1990) Wave digital filters. Ellis-Horwood, New YorkGoogle Scholar
  47. 47.
    Ledger D, Tomarakos J (1998) Using The low cost, high performance ADSP-21065L digital signal processor for digital audio applications. Revision 1.0, Analog Devices, Norwood, USAGoogle Scholar
  48. 48.
    Lyons R (2004) Understanding digital signal processing, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  49. 49.
    Lyons R, Bell A (2004) The swiss army knife of digital networks. IEEE Sig Process Mag 21(3):90–100CrossRefGoogle Scholar
  50. 50.
    Mitra S (2006) Digital signal processing: a computer-based approach. McGraw-Hill, New YorkGoogle Scholar
  51. 51.
    Mouffak A, Belbachir M (2012) Noncausal forward/backward two-pass IIR digital filters in real time. Turk J Electr Eng Comput Sci 20(5):769–789Google Scholar
  52. 52.
    Oppenheim AV, Schafer RW (1999) Discrete-time signal processing. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  53. 53.
    Orfanidis SJ (1996) ADSP-2181 experiments. http://www.ece.rutgers.edu/~orfanidi/ezkitl/man.pdf. Accessed Dec 2012
  54. 54.
    Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall, Inc., Upper Saddle RiverGoogle Scholar
  55. 55.
    Oshana R (2005) DSP software development techniques for embedded and real-time systems. NewnesGoogle Scholar
  56. 56.
    Owen M (2007) Practical signal processing. Cambridge University Press, CambridgeGoogle Scholar
  57. 57.
    Pasko M, Walczak J (1999) Signal theory. Wydawnictwo Politechniki Slaskiej, Gliwice (in Polish)Google Scholar
  58. 58.
    Powell SR, Chau PM (1991) A technique for realizing linear phase IIR filters. IEEE Trans Sig Process 39(11):2425–2435CrossRefGoogle Scholar
  59. 59.
    Proakis JG, Manolakis DM (1996) Digital signal processing, principles, algorithms, and application. Prentice Hall, Inc., Englewood CliffsGoogle Scholar
  60. 60.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  61. 61.
    Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall, Inc., Englewood CliffsGoogle Scholar
  62. 62.
    Rao D (2001) Circular buffering on TMS320C6000. Application report, SPAR645A, Texas InstrumentsGoogle Scholar
  63. 63.
    Sozanski K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)Google Scholar
  64. 64.
    Sozanski K (2002) Implementation of modified wave digital filters using digital signal processors, In: Conference proceedings of the 9th international conference on electronics, circuits and systems, ICECS 2002, pp 1015–1018Google Scholar
  65. 65.
    Sozański (2003) Active power filter control algorithm using the sliding DFT. In: Workshop proceedings of the signal processing 2003, Poznan, Poland, pp 69–73Google Scholar
  66. 66.
    Sozański K (2004) Harmonic compensation using the sliding DFT algorithm. In: Conference proceedings of the 35rd annual IEEE power electronics specialists conference, PESC 2004, Aachen, GermanyGoogle Scholar
  67. 67.
    Sozański K (2008) Improved shunt active power filters. Przeglad Elektrotechniczny (Electr Rev) 45(11):290–294Google Scholar
  68. 68.
    Sozański K (2010) Digital realization of a click modulator for an audio power amplifier. Przeglad Elektrotechniczny (Electr Rev) 2010(2):353–357Google Scholar
  69. 69.
    Sozański K (2012) Realization of a digital control algorithm. In: Benysek G, Pasko M (eds) Power theories for improved power quality. Springer, London, pp 117–168Google Scholar
  70. 70.
    Sozański K (2013) A linear-phase IIR filter for audio signal interpolator. In: Conference proceedings of the signal processing, algorithms, architectures, arrangements and applications, SPA 2013, Poznan, Poland, pp 65–69Google Scholar
  71. 71.
    Sozański K (2015) Selected problems of digital signal processing in power electronic circuits, In: Conference proceedings of SENE 2015, Lodz, PolandGoogle Scholar
  72. 72.
    Sozański K (2016) Signal-to-noise ratio in power electronic digital control circuits. In: Conference proceedings of the signal processing, algorithms, architectures, arrangements and applications, SPA 2016. Poznan University of Technology, pp 162–171Google Scholar
  73. 73.
    Sozański K, Strzelecki R, Fedyczak Z, (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings of the 2001 IEEE 32nd annual power electronics specialists conference, PESC 2001, pp 1245–1250Google Scholar
  74. 74.
    Tantaratana S (1995) Design of IIR filters. In: Chen WK (ed) The circuits and filters handbook. IEEE Press, Boca RatonGoogle Scholar
  75. 75.
    Texas Instruments (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232 digital signal controllers (DSCs). Data manual, Texas Instruments, Inc\(\text{. }\) Google Scholar
  76. 76.
    Texas Instruments (2010) C2000 Teaching materials, tutorials and applications. SSQC019, Texas Instruments, Inc\(\text{. }\) Google Scholar
  77. 77.
    Texas Instruments (2011) TMS320C6745/C6747 DSP technical reference manual. SPRUH91A, Texas Instruments, Inc\(\text{. }\) Google Scholar
  78. 78.
    Texas Instruments (2011) TMS320C6746 fixed/floating-point DSP. Data sheet, SPRS591, Texas Instruments, Inc\(\text{. }\) Google Scholar
  79. 79.
    Texas Instruments (2012) C6000 Teaching materials. SSQC012, Texas Instruments, Inc\(\text{. }\) Google Scholar
  80. 80.
    Instruments Texas (2016) TMS320F2837xD Dual-Core Delfino Microcontrollers. Data sheet, Texas Instruments, Inc\(\text{. }\) Google Scholar
  81. 81.
    Instruments Texas (2016) The TMS320F2837xD architecture: achieving a new level of high performance. Technical brief, Texas Instruments, Inc\(\text{. }\) Google Scholar
  82. 82.
    Vaidyanathan PP (1992) Multirate systems and filter banks. Prentice-Hall Inc, Englewood CliffszbMATHGoogle Scholar
  83. 83.
    Venezuela RA, Constantindes AG (1982) Digital signal processing schemes for efficient interpolation and decimation. IEE Proc Part G 130(6):225–235Google Scholar
  84. 84.
    Vesterbacka M (1997) On implementation of maximally fast wave digital filters. Disertations no. 487, Linköping UniversityGoogle Scholar
  85. 85.
    Vesterbacka M, Palmkvist K, Wanhammar L (1996) Maximaly fast, bit-serial lattice wave digital filters. In: Proceedigs of DSP workshop 1996, Loen, Norway. IEEE, pp 207–210Google Scholar
  86. 86.
    Wanhammar L (1999) DSP integrated circuit. Academic Press, LondonCrossRefGoogle Scholar
  87. 87.
    Willson AN, Orchard HJ (1994) An Improvement to Powell and Chau linear phase IIR filter. IEEE Trans Sig Process 42(10):2842–2848CrossRefGoogle Scholar
  88. 88.
    Zieliński TP (2005) Digital signal processing: from theory to application. Wydawnictwo Komunikacji i Lacznosci, Warsaw (in Polish)Google Scholar
  89. 89.
    Zieliński TP, Korohoda P, Rumian R (eds) (2014) Digital signal processing in telecommunication, basics, multimedia, transmission. Wydawnictwo Naukowe PWN, Warsaw (in Polish)Google Scholar
  90. 90.
    Zolzer U (2008) Digital audio signal processing. Wiley, New YorkCrossRefGoogle Scholar
  91. 91.
    Zolzer U (ed) (2002) DAFX–digital audio effects. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations